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Abstract 
The Visible Difference Predictors are a class of data driven, white 
box, efficiently implemented image or video difference metrics. 
They model important aspects of perception like spatial and 
temporal vision, foveation, and more, and are calibrated on 
datasets relevant for display and graphics applications. In this 
paper, we present a historic retrospective of VDPs, and a high-level 
technical overview and comparison to other metrics in the 
literature. Finally, we put forward a practical guide for selecting 
the appropriate metric for a given engineering problem and discuss 
how metrics can be effectively combined with subjective testing for 
high-confidence assessments. 
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1. Introduction 
Automatic evaluation of image and video quality is an important 
task in visual computing. It helps reduce the need for costly 
subjective evaluation and allows finer-grain searching of parameter 
spaces for studied techniques. This manuscript focuses on a series 
of metrics called visual difference predictors (VDPs), which are 
geared for use in display engineering. 
 
Visual metrics: Designing display systems with good image 
quality is an important problem for scientists and engineers. 
Practical display systems are not perfect and contend with ever 
present visual artifacts (Fig. 1). It is often necessary to maximize 
the visual image quality of a given display while maintaining 
desirable tradeoffs with ancillary aspects of the system, such as 
weight, cost, or power consumption requirements. General-purpose 
visual difference metrics are often employed in this context. VDPs 
belong to the popular full-reference difference metrics class: these 
methods predict the perceived difference between two pieces of 
content, typically a pristine reference and a test which has been 
distorted by the artifact being studied.  

Accurate perceptual predictions of this type are difficult due to the 
complexity of the human visual system, which is not easily 
modeled in its entirety. Most modern metrics ignore aspects of 
human vision that are difficult to model, such as color, foveation, 
or temporal vision, but which may be crucial for display 
engineering applications. Most popular metrics also do not model 
details of the display but choose to operate on standardized pixel 
values instead. This can be undesirable for specialized applications, 
as critical aspects of a display like resolution, size, brightness, color 
space, frame rate, and so on are left unaccounted. Consider the task 
of estimating distortions introduced by the optical stack in head 
mounted displays. These may include blur (Fig. 1, top-left), color 
fringes (top-middle), contrast loss (center-left), waveguide 
nonuniformity (WGNU, bottom-right), or the associated dynamic 
correction error (DCE, center-right). These errors are difficult to 
model in pixel space as they are dependent on the physical 
characteristics of light emitted by the display. The same is true for 
light source artifacts, like nonuniformity of individual elements in 
LED displays (LSNU, center-bottom). 

 

Figure 1. Images surrounding the reference show examples 
of common display artifacts, particularly those introduced by 
optical elements used in modern head-mounted displays. 

2. Related Work – Popular Metrics 
In this section, we will present an overview of VDP goals and 
present a qualitative comparison to a selection of metrics highly 
popular in display engineering. For a detailed technical discussion 
of modern perceptual difference metrics, including quantitative 
performance evaluations on several image quality datasets, please 
see our latest publications [1,2]. 
Visual Difference Predictors: VDP metrics are united by a 
standard approach. In the past, the philosophy of VDPs has been 
described by a ranked list of priorities: 

1) Match data from human studies; 
2) Good computational usability; 
3) Plausible modeling of visual system mechanisms. 

Previous VDPs [4,3] became popular for applications in industry 
and academia. This paper is focused on two recent successors [1,2] 
which target novel applications in foveation and color. 
 
Popular metrics: While a great number of metrics is available in the 
literature, we will focus this discussion on a few methods that are 
especially popular for display applications. The PSNR formula [5] 
provides a way to scale mean-squared-error (MSE) in easier to interpret 
dB units. The structural similarity index measures (SSIM and MS-
SSIM) [6] account for the spatial surrounding of a given pixel by 
analyzing its neighborhood. The CIE DE00 [7] formula is popular for 
color differences, developed for work on uniform patches. LPIPS [8] 
is a deep-learning algorithm, using network features to predict visible 
differences. Notably, while network-based approaches can be 
powerful, they struggle to extrapolate from training data, unlike VDPs’ 
explicit modeling of vision, which allows for stable  results even in 
cases not previously faced by the metric.



 

Table 1. This qualitative comparison of select popular metrics shows which aspects of vision and display are modeled 
Metrics: Approach Display 

Geometry 
Display 

Photometry 
Spatial 

Features 
Video Color Foveation 

PSNR [5] Signal quality No No No No No No 
SSIM [6] Correlation No No Yes No No No 
CIE DE00 [7] Equation No Yes No No Yes No 
LPIPS [8] Machine learning No No Yes No Yes No 
FovVideoVDP [1] VDP Yes Yes Yes Yes No Yes 
ColorVideoVDP [2] VDP Yes Yes Yes Yes Yes No 

Table 1 above highlights features modeled by each metric: 
• Display geometry describes the physical placement of 

the display’s pixels in relation to the viewer and is not 
modeled by the non-VDP metrics. 

• Display photometry describes modeling of the light 
being emitted by the display (as opposed to operating 
purely on pixel values), and except for CIE DE00, is 
rarely modeled by other metrics.  

• Spatial features refer to whether a pixel’s value is 
modeled independently or in context of its neighbors. 

• Video metrics consider the temporal context of the 
pixel. None of the non-VDP metrics discussed here 
have this treatment, and most metrics in the literature 
include at most a window of 2 subsequent frames. 

• Color refers to whether pixels are modeled in terms of 
chroma, or luma only. 

• Foveation refers to modeling the loss of sensitivity for 
parts of the image outside the fovea. As human vision 
generally degrades in this case, this information may be 
important for methods like foveated rendering. 

Because display artifacts often present mixes of several of these 
aspects of display and vision, it is important for a metric to 
accurately cover as many of these as possible. 

3. VDP pipeline 
In this work, we will focus on two modern VDPs, both of which 
are image and video difference metrics, and account for the viewing 
conditions, geometric, and photometric characteristics of the display. 

Each metric opens the door to new, previously impossible, use cases. 
For both methods, extensive testing on novel and existing subjective 
image quality datasets also shows a significant gain in prediction 
performance compared to other methods for standard tasks. 
FovVideoVDP [1] models the spatial, temporal, and peripheral aspects 
of perception. It is the first work that simultaneously treats these three 
central aspects of vision. It is especially useful for work on displays that 
cover a large field-of-view, such as Virtual and Augmented Reality 
displays, and associated methods, such as foveated rendering. 
ColorVideoVDP [2] models spatial and temporal aspects of vision, for 
both luminance and color. It is built on novel psychophysical models 
of chromatic spatiotemporal contrast sensitivity and cross-channel 
contrast masking. ColorVideoVDP opens the doors to many novel 
applications which require the joint automated spatiotemporal 
assessment of luminance and color distortions, including video 
streaming, display specification and design, visual comparison of 
results, and perceptually guided quality optimization. 
An outline of the workflow of VDP metrics is shown in Figure 2. 
For a detailed explanation of the techniques used in these metrics, 
we refer the reader to the paper manuscripts. The actively 
maintained implementation of each method is available on 
GitHub*. Comprehensive documentation and several practical 
examples are also provided. 
Finally, for more context on the contrast sensitivity component, we 
point the readers to our recent work introducing a data-driven 
multidimensional contrast sensitivity function, stelaCSF [9].

Figure 2. This figure shows an outline of the VDP pipeline. The red section represents video characterization, where the 
reference and test inputs are modeled in terms of display geometry and photometry. In orange, perceptual modeling is done 
using visual channels, including temporal and spatial multiscale decomposition (as well as additional color channels for 
ColorVideoVDP), and filtered through a CSF model. In yellow, the masking model is used to predict the visible difference 
between test and reference while considering the context of each pixel location. Finally, in green, resulting values are pooled 
and either rendered in a visual representation of the visible difference map or regressed to a single unified quality score. 
* FovVideoVDP: https://github.com/gfxdisp/FovVideoVDP, and ColorVideoVDP: https://github.com/gfxdisp/ColorVideoVDP.

https://github.com/gfxdisp/FovVideoVDP
https://github.com/gfxdisp/ColorVideoVDP


 

4. Metric Usage 
The main advantage of employing metrics in an engineering 
workflow is their ease of use, which only requires simulating the 
conditions being examined. However, metrics are imperfect 
representations of the human visual system. In consequence, to 
obtain a high confidence assessment of display artifact visibility, it 
is often desirable to perform some subjective evaluation when 
physical prototyping becomes feasible. This evaluation can also be 
used to verify the results of the metric, e.g. by testing a subset of 
conditions simulated in an earlier design phase.  
Most metrics in the literature output results in arbitrarily scaled 
units – for example, PSNR values typically span ranges of 30-50 
dB. However, there is no clear pipeline to relate the metric output 
to subjective study results, or a straightforward way to select 
perceptually acceptable tradeoffs by setting an appropriate metric 
output threshold value. VDP metrics solve this issue by scaling the 
output on a perceptually meaningful absolute scale of Just-
Objectionable-Differences (JODs, shown in Fig. 3). All VDP 
metrics’ outputs are scaled in JODs using the same rule: 

𝑸(𝑹, 𝑻) = 𝟏𝟎	 − 	𝑱𝑶𝑫(𝑹, 𝑻) 

where Q(R,T) is the metric’s output, and JOD(R,T) represents the 
expected JOD-scaled probability that the reference content is 
chosen over the test content in a 2-alternate-force-choice (2AFC) 
procedure. In other words, a metric score of 10 represents a case 
where the test image or video is 0 JODs away from the reference, 
i.e. it has quality perfectly identical to the reference and would be 
selected at random (50/50) with it in a subjective study. A VDP 
score of 9 represents 1 JOD, or a 75/25 split, etc. 
For users interested in learning more about designing simple but 
effective pairwise comparison studies, the authors recommend the 
work of Perez-Ortiz et al. [10], as well as the use of the associated 
GitHub library, Pwcmp*. Note that results scaled in this way can be 
directly compared to VDP outputs in absolute terms for the purpose 
of validation. 
Given that multiple VDP metrics exist, a natural question relates to 
which metric should be selected for a given task. Currently, we 
recommend using FovVideoVDP for tasks that require foveation, 
and ColorVideoVDP for all other tasks. 

 
Figure 3. This figure depicts the JOD scale, relating the 
probability of the test image being preferred over the 
reference on the y axis to the JOD value on the x axis. 

5. Conclusions 
In this manuscript, we presented a brief overview of VDP visual 
difference metrics and how they relate to other methods popular in 
display engineering. A brief outline of how metrics can be used for 
practical tasks is provided. We encourage readers to explore the full 
technical treatment of each VDP [1,2], and to try out these methods 
using the provided implementations. 
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