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Fig. 1. Display mapping techniques and study results. We studied six power-saving display mapping algorithms. These techniques are used in traditional
display power reduction as well as recently-proposed methods for VR displays. Just objectionable difference (JOD) scores provide a unified measure of the
magnitude of perceptual impact, and percentage values represent relative display power savings (OLED display shown here). Colors • • • • • • • correspond
to plots throughout the manuscript. Optimal techniques have low perceptual impact (perceived close to reference • in JODs), but provide big power savings.

Display power consumption is an emerging concern for untethered devices.
This goes double for augmented and virtual extended reality (XR) displays,
which target high refresh rates and high resolutions while conforming to an
ergonomically light form factor. A number of image mapping techniques
have been proposed to extend battery usage. However, there is currently
no comprehensive quantitative understanding of how the power savings
provided by these methods compare to their impact on visual quality. We
set out to answer this question.

To this end, we present a perceptual evaluation of algorithms (PEA) for
power optimization in XR displays (PODs). Consolidating a portfolio of
six power-saving display mapping approaches, we begin by performing a
large-scale perceptual study to understand the impact of each method on
perceived quality in the wild. This results in a unified quality score for each
technique, scaled in just-objectionable-difference (JOD) units. In parallel,
each technique is analyzed using hardware-accurate power models.

The resulting JOD-to-Milliwatt transfer function provides a first-of-its-
kind look into tradeoffs offered by display mapping techniques, and can be
directly employed to make architectural decisions for power budgets on XR
displays. Finally, we leverage our study data and power models to address
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important display power applications like the choice of display primary,
power implications of eye tracking, and more1.
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1 INTRODUCTION
Modern augmented and virtual extended reality (XR) devices re-
quire high resolution, fast refresh rates, wide fields of view, and
high dynamic range displays toward the ultimate goal of passing
the “visual Turing test” [Matsuda et al. 2022; Zhong et al. 2021].
However, these requirements lead to higher power consumption
not only for computation costs, but also for running the display
itself. This is problematic for stand-alone XR devices with compact
and ergonomic form factors that limit battery size. Balancing the
conflicting requirements of high image quality and display power
efficiency is a critical problem and requires careful optimization in
both hardware and software.

The display alone can consume up to 40% of the power budget of
consumer electronics devices [Anand et al. 2011; Tan et al. 2013; Wee
et al. 2018]. To remedy this, a number of power-saving algorithms
have been proposed which aim to maintain the image’s intended
appearance while reducing display power use. Throughout this
1Source code and data is available at github.com/NYU-ICL/pea-pods.
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work, we refer to these methods as display mapping techniques.
These techniques range from simple solutions, like dimming the
display [Choi et al. 2002; Gatti et al. 2002], to complex perceptually-
inspired color mappings [Duinkharjav et al. 2022b].
When applying these techniques, the resulting display mapped

content may contain visible distortions in terms of contrast, color
accuracy, or brightness, but no unified analysis of the perceptual
impact of this family of techniques has ever been attempted. Predict-
ing and quantifying the trade-offs between the power savings and
perceivable image quality loss in the wild across different display
types will provide practical guidance for display characteristics,
rendering algorithms, and overall XR system design.

In this work, we measure - for the first time under a unified archi-
tecture - the perceptual impact of different power-saving methods
across common display types, free-form viewing, and employing
natural imagery. Interpreting the acquired power-perception data
provides quantitative guidance on optimizing display mapping tech-
niques that adapt to display architecture and target battery life
spans. To this end, we first characterized the power consumption
profiles for common display technologies used in commercial XR
devices, including organic light emitting diode (OLED), local and
global backlit liquid crystal (LC) displays. We collected subjective
judgments of distortion strength for six power-saving methods with
a large-scale subjective user study. Our results are scaled in unified
perceptual units of just-objectionable-difference (JOD). The scaled
data is then used to establish a transfer function between JODs and
milliwatts. Finally, we demonstrate learnings and power-aware XR
applications with adaptive rendering optimization, multi-primary
display, and power-aware eye-tracking control. Source code and
data is available at github.com/NYU-ICL/pea-pods.

2 BACKGROUND AND RELATED WORK

2.1 Display Properties and Power Consumption
The power consumption of a screen when displaying the same con-
tent varies significantly depending on the underlying architecture.
Due to this, some display mapping techniques that are optimal
for one display type may be useless for another. In particular, for
emissive displays, such as organic light-emitting diode (OLED), indi-
vidual pixels produce their own light, and each pixel’s power profile
is proportional to its intensity [Dong and Zhong 2011b]. In contrast,
transmissive displays rely on a separate light source, such as a back-
light unit (BLU), to illuminate a subtractive filter array. In this case,
the power consumption can be dominated by BLU intensity, and
have little to no dependence on individual pixel values [Cheng and
Pedram 2004]. In Section 3 we examine in detail one XR consumer
device in each of these two categories: the emissive OLED HTC
Vive Pro Eye [HTC 2020], and the transmissive liquid-crystal (LC)
Meta Quest Pro [Rao et al. 2023].

2.2 Display Power Optimization Solutions
The display is one of the most power hungry elements of standalone
electronics, such as XR headsets, mobile phones, laptops, etc. Conse-
quently, a number of techniques aiming to reduce their power usage
exist. Arguably the most common “power-saving mode” for mobile

devices is uniform dimming, scaling down display brightness lin-
early [Cheng and Pedram 2004; Choi et al. 2002; Gatti et al. 2002]. To
avoid globally dimming content, clipping high-luminance regions
can preserve the brightness in most of the image at the expense of
detail and brightness in highlight regions [Kerofsky and Daly 2006].
In self-emissive LED-based displays, color remapping can save

power by shifting pixel colors based on differences in primary effi-
ciencies [Dong and Zhong 2011a]. Different luminous efficiencies of
each primary LED, computed from its spectral power distribution,
can contribute to imbalances in power consumption by different col-
ors. Wide field displays can take advantage of the limited perceptual
acuity of the human visual system through eye-tracked methods
such as peripheral dimming [Kim and Lee 2020] or foveated color
remapping [Duinkharjav et al. 2022b].

These display mapping proposals in prior art, however, measure
perceptual impact in many different ways, making it difficult to de-
termine which techniques are better in terms of both power savings
and subjective quality. For example, some works measure image
quality by using quantitative metrics [Kerofsky and Daly 2006], or
psychophysical thresholds [Kim and Lee 2020], by conducting qual-
itative surveys [Dong and Zhong 2011a], or by comparing against a
baseline [Duinkharjav et al. 2022b]. Wee et al. [2018] study several
display mapping techniques (color shift, peripheral dimming, and
a “Tron” mode in which images are filtered to contain only salient
edges) across several display types. However, the authors conducted
a task completion evaluation, rather than measuring the visibility
of introduced distortions, concluding that all methods performed
equally well in terms of usability and task completion time. Our
goal is to fill in this gap in the literature by studying the percep-
tual impact of common display mapping techniques with a unified
framework and different display types.

2.3 Perceptual Quality Measurement and Optimization
Measuring and quantifying perceptual quality of distorted content
is a central topic in visual computing. Existing models may target
low-level features, such as contrast sensitivity [Mantiuk et al. 2022],
or high-level semantics [Fu et al. 2023]. With different display and
content types, some methods extend beyond static images [Yu and
Grauman 2015; Zhang et al. 2018], to dynamic [Seshadrinathan and
Bovik 2007], or foveation-aware [Mantiuk et al. 2021] videos. Most
models of this sort are based on simple stimuli and controllable view-
ing conditions. However, the highest standard of quality evaluation
involves direct subjective testing for the targeted application.
Perceptual models have been leveraged to optimize the quality

of XR displays, including improved rendering speed [Krajancich
et al. 2023], reduced data volumes [Chen et al. 2022; Kaplanyan
et al. 2019], or reduced target-searching times [Duinkharjav et al.
2022a]. We examine this type of optimization in the context of
saving display power. Producing optimized solutions is important,
because systems benefit from targeted goals, such asmore aggressive
savings in low batterymodes: sacrificing the least possible amount of
perceptual quality for the greatest power gain. To do this, we need to
be able to perform a quantitative analysis. We present the first study
that progressively evaluates and interprets the connection between
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power consumption and perceptual quality at various scales, taking
into account key considerations like display architecture.

3 CHARACTERIZATION OF XR DISPLAY POWER
Display power consumption is dependent on the image content be-
ing displayed. The design of optimal power-saving methods for each
display type requires accurate measurement and characterization
of how a display’s power consumption varies with pixel intensity
distribution. As representatives of the two display types, we chose
two commercially available VR headsets: Meta Quest Pro and the
HTC VIVE Pro Eye for liquid-crystal (LC) and OLED, respectively.
Below, we describe our setup to establish accurate electrical power
measurements and display-dependent power consumption models.

3.1 Liquid-Crystal (LC) Displays
Measurement. Isolated power measurements of the Meta Quest

Pro’s LC display module were collected by measuring current and
voltage across power supply rails on the display board. Voltage
drop across these rails is measured using a Keysight InfiniiVision
DSOX3034T oscilloscope with passive probes placed across shunt
resistors, and current is computed using Ohm’s Law. All measure-
ments were time-averaged over 5 seconds.
To measure BLU power consumption, we uniformly sampled 21

test relative luminance values, 𝑦𝑖 . For each sample, all BLU LEDs
were set to 𝑦𝑖 during measurement. For LC power measurement,
we sampled 20 test colors uniformly for each RGB sub-channel (60
colors in total + 1 for black). We set every pixel to the test color
when making power measurements. An image of our measurement
setup is included in Figure 2a.

Content-Dependent Power Model. We regressed analytical power
models that map pixel color to physical units of LC power consump-
tion in milliwatts, mW, derived from the measured data described
in the previous paragraph. From these measurements, we found a
strong positive relation between BLU power consumption and the
relative luminance of LEDs, which we model as a linear function of
relative luminance, 𝑦,

MB (𝑦) = 𝛼𝑦 + 𝛿 (1)

with free parameters 𝛼 and 𝛿 . The correlation coefficient of the BLU
model regression is 𝑟2 = .99. Figure 3 (right) includes a plot of the
measured BLU power consumption (𝑦-axis) as a function of relative
luminance (𝑥-axis), and the regressed model (dashed line). The LC
data can be described as a per-channel summation of 2nd-order
polynomial functions of pixel intensity,

MLC (c) =
3∑︁

𝑝=0
𝛼𝑝c2𝑝 + 𝛿𝑝 , (2)

where 𝛼𝑝 , 𝛿𝑝 are free parameters, 𝑝 is the index of an RGB primary,
and c is a linear RGB pixel color. The root mean square error and
mean absolute percentage error of the LC model regression are 0.31
and 0.92% respectively. Figure 3 (left) visualizes the LC power model
for each RGB sub-channel.
The total display power consumption is modeled as the sum of

contributions from the BLU and LC panel. Notably, the variation
in BLU power consumption is more than an order of magnitude

greater than the LC power (>570mW variation for BLU compared to
<20mW for LC). Because of its negligible contribution, in following
computations of power consumption we ignore the LC panel, similar
to prior work [Cheng and Pedram 2004].

Backlight Dimming Scheme. The spatial resolution of the BLU is
much lower than the displayed image. Individually-controllable BLU
LEDs can thus take different intensities depending on the image
processing algorithm employed. For instance, considering an LC
display with a global dimming backlight, all BLU LEDs take the same
driving value, which can be set to the maximum pixel intensity of
the displayed image. The power consumption in the global dimming
setting is therefore a function of the maximum pixel intensity,

P(I) = MB (max{c : c ∈ I}) +
∑︁
c∈I

MLC (c), (3)

where I is an image with linear RGB pixel colors c. In the local
dimming setting, BLU LEDs are modulated individually. Power con-
sumption is represented as a function of LED driving values, 𝑑𝑖 ,

P(I) = 1
𝑁

𝑁∑︁
𝑖=1

MB (𝑑𝑖 ) +
∑︁
c∈I

MLC (c), (4)

where 𝑁 is the total number of backlight LEDs. We determine LED
driving values using a heuristic optimization procedure similar to
Trentacoste et al. [2007a,b]. Accurate computation of driving values
depends on the spatial location of BLU LEDs and the optical blur
due to diffusers as well as other physical components of the LC
display. This effect is measured by determining the light spread, or
point spread function (PSF), of a single illuminated LED. The PSF
was measured for the Meta Quest Pro display, and a Lorentzian was
fit to the measurements (see supplementary Section A.1). Images of
the backlight LED spatial arrangement and the PSF are displayed
in Figure 2b and Figure 2c, respectively. More details of this local
dimming algorithm are described in supplementary Section A.2.

3.2 Organic Light-Emitting Diode (OLED) Displays
OLED power is often modeled as a linear function of display pri-
maries [Dong and Zhong 2011b; Duinkharjav et al. 2022b],

P(I) =
∑︁
c∈I

p⊺c + 𝛿. (5)

We adopt this function to model the HTC Vive Pro Eye display
power consumption by leveraging the free parameters p, 𝛿 from
Duinkharjav et al. [2022b] for the same display.

4 DISPLAY MAPPING TECHNIQUES
We consolidated six display mapping techniques which are either
commonly used in traditional mobile displays or have been recently
proposed for XR displays. For each display mapping, we introduce a
modulation factor, 𝛼 , that increases the magnitude of each algorithm.

Uniform Dimming. (•) The first technique is uniform dimming,
which linearly scales down image pixel values,

c′ = (1 − 𝛼)c. (6)
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(a) display measurement setup
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Fig. 2. Meta Quest Pro display. (a) We measure the power consumption of the Quest Pro LC display module by measuring voltage drop across shunt resistors.
This figure includes the display module (displaying an all-red image), driver board, and oscilloscope probes. We visualize the arrangement, (b), of BLU LEDs
(black circle) for theQuest Pro display. The point spread function (PSF) and physical measurements are displayed in (c). The x-axis is distance from a single
illuminated LED in mm, and the y-axis is in units of log-nits.
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Fig. 3. LC display power models. A visualization of the LC (left) and backlight
unit (BLU, right) power models. Points show physical measurements, and
dashed curves are regressed model fits.

This approach is commonly used in low-battery modes for smart
phones and other mobile display technologies, e.g., Windows adap-
tive brightness control [Microsoft 2022].

Luminance Clipping. (•) The next technique is luminance clipping,
which clips the highest-luminance image features,

c′ = (1 − 𝛼) c
Y(c) , if Y(c) > (1 − 𝛼). (7)

The function Y maps pixel color c to relative luminance [BT 2002].
Fig. 4a visualizes the difference between luminance clipping and
uniform dimming. While uniform dimming decreases the luminance
of all pixels in an image, clipping only decreases luminance of high-
lights. Bright regions (e.g. the cloud) in Fig. 4a are dimmed in both
cases, while the tree and rock remain at similar brightness compared
to the reference for clipping. However, details are lost in clipped
regions compared to uniform dimming.

Brightness Rolloff. (•) Brightness rolloff is an eye-tracked method
which applies peripheral dimming using a Gaussian profile,

c′ = exp
(
4 ln(1 − 𝛼)
(FOV − 𝜃 )2

𝜙2
)
c, (8)

where FOV is the maximum field of view of the display (relevant
device specifications in Supplement C). The retinal eccentricity
of a pixel located at image coordinates (𝑥,𝑦) is computed as 𝜙 =

1
ppd

√︃
(𝑥 − g𝑥 )2 + (𝑦 − g𝑦)2, where g is the image-space gaze loca-

tion and ppd is peak pixel density of the display [Mantiuk et al.
2021]. The foveal region, within 𝜃 = 10◦ eccentricity, is unmodified.
A derivation of Equation (8) is in supplementary Section B.1. Prior
work use a linear rolloff [Kim and Lee 2020], which can create visual
artifacts due to the 𝐶1 discontinuity [Moulden et al. 1988], while
our Gaussian profile ensures 𝐶1 continuity.

Fig. 4b illustrates the rolloff mapping applied to a white image at
the maximum magnitude used in the user study (𝛼 = 0.88), as well
as a plot of the relative luminance as a function of eccentricity for
the three stimulus magnitudes used in the study. The orange curve
corresponds to the profile applied to the white image.

Dichoptic Dimming. (•) Techniques which use different rendering
modalities for each eye in a binocular display have recently been
proposed for tasks like tone mapping [Zhong et al. 2019]. In our
implementation, rather than dimming the display equally for both
eyes as done for uniform dimming, we only dim the display cor-
responding to one eye. Because the majority of the population is
right-eye dominant (approx. 70% [Ehrenstein et al. 2005; Reiss and
Reiss 1997]), we choose to dim the left eye only.

Color Foveation. (•) Human color perceptual acuity is highest in
the fovea, and decreases with retinal eccentricity [Cohen et al. 2020;
Hansen et al. 2009]. This characteristic can be taken advantage of in
displays with non-uniform color efficiencies, such as OLED displays,
by modulating pixel chromaticity in a power-aware fashion. We
model the power-optimal color shift of c located at eccentricity 𝜙

ACM Trans. Graph., Vol. 43, No. 4, Article 67. Publication date: July 2024.
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Fig. 4. Display mapping techniques. The 𝑥- and 𝑦-axes of (a) represent input and output luminance respectively, and the horizontal red dashed line is set
at 𝛼 = 0.5. A visual comparison of reference, luminance clipping, and uniform dimming (top to bottom) is included with insets in red. (b) We visualize the
brightness profile ((b) top; 𝑥-, 𝑦-axes are eccentricity, brightness) and rolloff applied to a uniform white image ((b) bottom). Whitepoint shift, (c), computes
average color c of an input image I which is passed to a perceptual model that computes a new power-optimal color, 𝑓 (c, 0) . The whitepoint of I is shifted
in the direction of a vector pointing from c to 𝑓 (c, 0) . Given source and destination whitepoints, a transformation matrix MA is computed and applied to I.

using the model described by Duinkharjav et al. [2022b],
𝑓 : (c, 𝜙) ↦→ argmin

𝑥∈MΘ (c,𝜙 )
P(𝑥), (9)

where MΘ is a radial basis network with parameters Θ which re-
turns a set of colors, in the DKL color space [Derrington et al. 1984],
perceptually indistinguishable from c when viewed at eccentricity
𝜙 . The function 𝑓 computes the power-minimal color within this
set, where P is a display power model. Final color is computed as

c′ = c + 𝛼 (𝑓 (c, 𝜙) − c) . (10)

Whitepoint Shift. (•) Similar to prior color remapping techniques
[Dong and Zhong 2011a; Wee et al. 2018], the next technique lever-
ages chromatic adaptation [Luo et al. 2000] to shift the display
whitepoint to a more power-optimal whitepoint. Our algorithm
applies Equation (9), assuming viewing at 𝜙 = 0◦ eccentricity. The
original whitepoint is then transformed in the computed direction,

w′ = w + 𝛼 (𝑓 (c, 0) − c) , (11)

where c = AVG(I) is the average color in I, w is the whitepoint
under D65 illuminant, and w′ is the whitepoint under a new illumi-
nant. Given the source and destination whitepoints, we can compute
a chromatic adaptation matrix by following a linear simplification
of the Bradford chromatic adaptation transform [Lindbloom 2017],

MA = B−1diag(𝜸 ′ ⊘ 𝜸 )B,
c′ = Mxyz2rgbMAMrgb2xyzc,

(12)

where 𝜸 = Bw, 𝜸 ′ = Bw′, B is the Bradford matrix [Luo and Hunt
1998], taking colors from the XYZ to the LMS (cone response) space,
andMA is the chromatic adaptation transform. The symbol ⊘ rep-
resents element-wise division. Figure 4c visualizes this procedure.

5 PERCEPTUAL STUDIES
We aim to measure the subjective quality of different power-saving
techniques described in Section 4. To do this, we conducted a series
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Fig. 5. Pilot Study. We conducted a pre-pilot to set initial magnitude values
for each display mapping. The left plot shows the stimuli magnitudes as
scheduled by QUEST, and the right plot shows the psychometric fit to the
user responses (P1). The dashed line represents 75% detection (1 JND).

of perceptual studies with natural stimuli and free-form viewing.
We determined appropriate stimulus magnitudes via pilot studies
(Section 5.1), which were then used in our large-scale main study
(Section 5.2).

5.1 Pilot Studies: Setting Stimuli Magnitudes
Introducing invisible or obvious distortions would lead to trivial
results. To avoid this, rather than choosing arbitrary technique pa-
rameters, we conducted several pilot experiments to findmeaningful
magnitudes for each of three increasing levels of intensity.

5.1.1 Pre-Pilot. We conducted a small-scale pre-pilot on expert
participants (𝑁 = 2 authors) to set initial magnitudes of each power
saving technique. A two-interval forced choice (2IFC) procedure
using a QUEST adaptive staircase [Watson and Pelli 1983] was used.
Participants were shown two videos, the reference and a display
mapped test, and were tasked with selecting the one with better

ACM Trans. Graph., Vol. 43, No. 4, Article 67. Publication date: July 2024.
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visual quality. In this setting, displaymapped imagery is perceptually
identical to the reference when participants select the modulated
video 50% of the time (at chance). We estimated the parameters of
a Weibull-shaped psychometric function [Weibull 1951] fit to the
2IFC data to determine the threshold at 75% probability of detection,
or 1 Just-Noticeable Difference (JND). An example fit is shown in
Figure 5 for uniform dimming, in which the 1 JND threshold was
roughly 𝛼 = 0.171. Psychometric curves for each power-saving
modality are displayed in supplementary Figure 12. To guide the
selection of stimuli magnitude, QUEST uses a prior, which was
estimated using a method of adjustment procedure conducted on
the first author. Sessions concluded after 50 trials or until the QUEST
procedure surpassed a 95% confidence threshold. A 360◦ video from
our set of stimuli (described in Section 5.2) is randomly selected and
used for the duration of the trials. We set three magnitudes for each
power-saving technique at 1, 2, and 3 JNDs (as extrapolated from
the psychometric curve) to be used in the first pilot study.

5.1.2 Pilot Studies. After setting the initial magnitudes in the pre-
pilot, we conducted two further pilots using the main study’s proto-
col (see Section 5.2). After each pilot, we adjusted algorithm mag-
nitudes by fitting a best-fit linear model to the magnitude vs. JOD
pilot data. New magnitudes were set at intersections with 1, 2, and
3 JODs (see supplementary Section D.2 for details). Both pilots were
conducted on expert participants (𝑁 = 8 each). The final magni-
tudes used in the main study for each technique are reported in
supplementary Section D.3.

5.2 Main Study: Examining Display Mapping Techniques
Hardware Setup. Two commercial head mounted displays were

employed – the HTC VIVE Pro Eye and Meta Quest Pro (relevant
device specifications can be found in Supplement C). Both devices
have integrated eye and head tracking, with data readily obtainable
from the respective SDKs and collected during the study.
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Participants. 30 naïve paid participants aged 25 to 65 (9M, 19F,
2 other) were recruited, none of whom participated in the pilots.
All participants signed informed consent, passed an Ishihara color
test and reported normal or corrected-to-normal vision. The study
was approved by an Institutional Review Board (IRB). User data was
anonymized and sent to a secure server after each session.

Stimuli. We render 360◦ stereoscopic videos, applying display
mappings in real-time via custom post-processing shaders using
Unity’s ShaderLab language. We chose three real-world videos from
the LIVE-FBT-FCVR Database [Jin et al. 2020, 2019, 2021] and hand-
crafted two additional videos representative of common VR scenar-
ios: scrolling text and viewing video. All videos were between 10-12
seconds long, and played on loop. Representative frames are shown
in Figure 6, with each technique applied at the 3 corresponding
magnitudes (additional details in Supplementary D.1).

Experimental Procedure. The experimental procedure consisted
of a two-interval forced choice task (2IFC) using the method of
paired comparisons. We chose this protocol because it has been
shown to result in less noisy data compared to direct rating studies
[Perez-Ortiz et al. 2019]. At the start of each trial, users are shown
the reference video, and can freely switch between this and two test
videos using a 3-button keyboard, with final selections made using
a foot pedal. A grey blank screen was displayed for 500ms when
stimuli were switched, and was introduced to aid with adaptation
and so participants could not make direct comparisons between
stimuli by “flipping” between conditions. We allow users to make
natural eye and headmovements to simulate behavior representative
of natural VR/AR use. We included, but did not enforce, a 20-second
timer for each trial.

Participants were comfortably seated for the duration of the study.
Each participant performed the experiment on one of the two display
types (Meta Quest Pro or HTC VIVE Pro Eye). Participants were
instructed to select the videowith higher quality or fewer distortions,
and were required to view both test videos at least once before
proceeding. They completed 6 controlled training trials prior to the
experiment to familiarize themselves with the protocol, showing
each power-saving modality set at the highest magnitude against
the reference for different scenes.
In total, our study included (6 display mappers + 1 reference) ×

3 magnitudes × 5 scenes = 105 conditions. A full pairwise study
design would require an estimated 40 hours (at 20 seconds per trial).
To keep duration tractable, we used an active sampling method,
ASAP [Mikhailiuk et al. 2021], which determines comparisons that
maximize expected information gain given all previous user re-
sponses. This allows us to significantly reduce the study length to
an average of 49 minutes per participant, including training, 5-point
eye tracking calibration, inter-pupillary distance adjustment, and a
post-study qualitative survey. Each participant completed a full set
of trials as scheduled by ASAP.

6 STUDY RESULTS
The pairwise comparison data from our main study was scaled
to units of JODs using Bayesian maximum likelihood estimation
under Thurstone’s Case V model as implemented using the pwcmp

software [Perez-Ortiz et al. 2019], which was also used to detect
outliers, removing the data of one participant. Scaling our data in
JODs allows us to make comparisons between methods on the same
perceptual scale, and enables an easy conversion to interpretable
units of percentage preference (visualized in Figure 15). For example,
if a method A has score 1 JOD greater than method B, this means
method A was selected 75% of the time over method B.

The main study results are shown in Figure 7. JOD error bars are
computed by simulating 2,000 bootstrap samples using the proce-
dure described by Perez-Ortiz et al. [2019]. The JOD scale is relative,
with the reference pegged to 0; scores for each display mapping
represent distance from the reference, which is itself a condition of
the study and thus is also shown with a confidence interval. Sev-
eral noteworthy insights can be drawn from this plot. For instance,
brightness rolloff has the lowest perceptual impact across all mag-
nitudes compared to other techniques. Two methods – uniform and
dichoptic dimming, are device independent and perform similarly
across display types. Whitepoint shift had the worst perceptual
impact among all other techniques at each magnitude level. These
insights are analyzed in the context of power savings in Section 7.1.

An ANOVA analysis was conducted to determine the significance
of relevant independent variables on the JOD scores. Significant ef-
fects included the display mapping technique type (𝐹 = 23.49, 𝑝 <<

.001) and magnitude (𝐹 = 35.67, 𝑝 << .001). Remaining variables
(scene, display type, and observer) were not found to be significant.

7 APPLICATIONS

7.1 Display and Battery Level Adaptive Power Mode
Our study highlights the interplay between display type and map-
ping techniques in terms of image quality and power savings. In
real-world applications, the intensity of display mapping may be
adjusted following the system status, such as the remaining battery
level or expected charging schedule. In addition, a devicemay ormay
not support eye-tracking or stereo viewing, determining whether
gaze-adaptive methods or dichoptic techniques are applicable.

7.1.1 Fitting Psychometric Functions to the Main Study Data. We
combined our study data and display power models to build a trans-
fer function of perceptual impact (in JODs) and relative power sav-
ings. To accomplish this, we first fit Weibull-shaped psychometric
functions to the main study data for each display mapping (Fig-
ure 16) under basic assumptions: all methods rendered with 𝛼 = 0
(equivalent to the reference) must have a JOD score of 0, and a large
score (indicating high likelihood of detection) for large modulation
factors. Full details for the optimization procedure are described
in supplementary Section E.1. These psychometric curves allow us
to extrapolate perceptual impact given display mapping intensity
along a continuous scale. Display power models are then applied
(see supplementary Section E.2) to establish transfer functions relat-
ing JOD scores to relative power savings, as shown in Figure 7. This
allow us to answer these practical questions for XR applications:

7.1.2 Q1: Which method delivers the best visual quality for a given
power target? Techniques can be ranked by evaluating transfer func-
tions in JODs. For example, our results indicate that for a 20% power
saving target on an OLED display, • > • > • > • > • > •.
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Reference   Uniform Dimming   Luminance Clipping   Brightness Rolloff   Whitepoint Shift   Color Foveation   Dichoptic Dimming   

Fig. 7. Perceptual Impact (JODs) vs. Power Savings (%). Using the hardware-accurate power models described in Section 3 and the user study data, we fit
transfer functions of JODs vs. % power savings for each display mapping for three different display types – OLED, global and local dimming LC. Shaded
regions represent 95% confidence intervals of percentage power savings; horizontal and vertical error bars represent 95% confidence intervals of JOD scores and
power savings, respectively. Note that methods like uniform and dichoptic dimming are content-independent and thus do not exhibit any vertical error bars.

Table 1. Power saving rankings at -1 JOD. The transfer functions in Figure 7 were evaluated for each method at -1 JOD for common XR display types, including
non eye-tracked (ET) as well as eye-tracked monocular and binocular displays. Colors represent power saving rankings for a column, blacked out cells are
techniques which do not apply to the specific display modality, and grey cells are methods which save near-zero power.

OLED Global Dimming LC Local Dimming LC
Monocular Binocular Mono + ET Bino + ET Monocular Binocular Mono + ET Bino + ET Monocular Binocular Mono + ET Bino + ET

• Uniform Dimming 20.2% 20.2% 20.2% 20.2% 20.2% 20.2% 20.2% 20.2% 20.2% 20.2% 20.2% 20.2%
• Luminance Clipping 6.45% 6.45% 6.45% 6.45% 3.43% 3.43% 3.43% 3.43% 5.69% 5.69% 5.69% 5.69%
• Brightness Rolloff 38.5% 38.5% .001% .001% 33.7% 33.7%
• Dichoptic Dimming 22.9% 22.9% 22.9% 22.9% 22.9% 22.9%
• Whitepoint Shift 2.01% 2.01% 2.01% 2.01% 0.00% 0.00% 0.00% 0.00% 3.54% 3.54% 3.54% 3.54%
• Color Foveation 17.4% 17.4% 0.00% 0.00% 5.79% 5.79%

We validated that the extrapolation provided by the transfer func-
tions aligns with user preference via a validation study (𝑁 = 5). A
full within-condition 2IFC design was used for 20% and 40% savings
targets (see Fig. 17 for conditions) on the OLED VIVE Pro Eye using
the task described in Section 5.2. Spearman’s rank-order correlation
analysis showed a strong positive correlation between JOD scores
predicted by the transfer functions and those collected from the
validation study (𝑟 = 0.943, 𝑝 < .005 and 𝑟 = 0.999, 𝑝 << .001,
for 20% and 40% savings, respectively). Please see supplementary
Section E.3 for detailed study protocol and full results.

7.1.3 Q2: Which method saves the most power for a given visual
quality target? Table 1 summarizes a sample ranking of each dis-
play mapping technique in terms of power saved at -1 JOD for
different XR device modalities, including monocular, binocular, and
eye-tracked versus non eye-tracked devices.

7.2 Display Primary Selection
Commercial display manufacturers typically choose display pri-
maries which provide good coverage of industry standard color
gamuts (e.g., sRGB, DCI-P3). In the literature, the design of display
primaries often targets increasing the color gamut [Ajito et al. 2000;
Xie et al. 2017], improving power efficiency [Li et al. 2020; Takaya
et al. 2005], and reducing color metamerism [Hu et al. 2020; Konig
et al. 2002]. Several works in the graphics community explored

these ideas for other applications, such as boosting brightness in
holographic displays [Kavaklı et al. 2023], reproducing colors using
fewer primaries [Huang et al. 2017], and expanding the gamut for
projector systems [Kauvar et al. 2015]. Our goal is to determine a
possible set of laser primaries that minimizes power consumption
and maximizes color accuracy when displaying sRGB images.

We formulated a proxy power model based on the primary lumi-
nous efficacy similar to prior work [Li et al. 2020; Xie et al. 2017],

K(𝜆) = 𝑘 · 𝜂 (𝜆)𝑉 (𝜆), (13)

where 𝜂 is wall-plug efficiency and 𝑉 is photopic luminous effi-
ciency, both a function of wavelength 𝜆. The constant 𝑘 = 683 lmW is
the photopic luminous efficacy of an ideal monochromatic source
(555 nm). While the wall-plug efficiency data (see Supplement F)
used in our analysis was measured from LEDs with different peak
wavelengths, we simplify the computation by assuming that it is
applicable to laser diodes.We assume that luminous efficacy,K , is in-
versely proportional to display power consumption, i.e. an increase
in luminous efficacy corresponds to a decrease in power consump-
tion. We uniformly sampled a mix of 1,000 laser diode primaries
along the spectral locus, and solved a constrained optimization prob-
lem to jointly minimize color difference and power consumption,
as defined by our proxy model. Significant power savings can be
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Color Difference vs. Power Savings CIE xy Chromaticity Diagram

Fig. 8. Display primary optimization. (Left) Display primaries which introduce non-zero power savings are plotted, with average color difference (CIEDE2000,
Δ𝐸∗) on the 𝑥-axis and mean power savings (%) on the 𝑦-axis, computed on a fixed set of 500 images from the ImageNet dataset. Whitepoint shift with the
magnitudes in the main study are plotted as light-blue points for reference. The green-shaded region (top-left) has higher power savings and lower Δ𝐸∗ score
than all examined whitepoint shift magnitudes. (Right) The primaries which save the most power with the lowest mean Δ𝐸∗ score are plotted on the CIE 𝑥𝑦

chromaticity diagram.

achieved with minimal loss in color accuracy (Figure 8) when dis-
playing a fixed subset (𝑁 = 500 images) of the ImageNet dataset
[Deng et al. 2009]. Power-optimal primaries for 3-, 4-, and 5-primary
displays with minimal Δ𝐸∗ [Sharma et al. 2005] are plotted on the
CIE 𝑥𝑦 chromaticity diagram (Figure 8).

Our optimization attempts to minimize color error (dE) when dis-
playing a fixed set of images in a standard sRGB color space rather
than maximizing gamut. As such, primary combinations which pro-
vide good coverage of sRGB, and in particular of the 500 images
in the dataset, minimize our objective. This explains the choice of
the optimal 4-primary display, for example, which includes an addi-
tional blue primary that covers sRGB but only extends the gamut
marginally. In practical implementation, considerations such as
physical space for additional primaries and manufacturing costs
would also need to be addressed. Furthermore, narrow-primary dis-
plays face many practical limitations, including color metamerism,
speckle noise, and hardware challenges, which each have associated
cost and efficiency tradeoffs to address [Kunkel and Ninan 2023].

7.3 Eye Tracker Power Consumption Analysis
In Section 7.1 we found brightness rolloff as the optimal display
mapping for OLED and local dimming LC displays. However, this
discussion and Figure 7 do not account for power consumed by the
eye tracker itself, which can be significant [Singh et al. 2023]. A
reference power estimate for a modern device, TobiiPro Glasses 3, is
189.69mW [Meyer 2022], while the ideal power consumption of an
eye tracking system should not exceed 100mW, according to Hong
et al. [2018].

As illustrated in Figure 9, brightness rolloff saves less power
than non-eye-tracked uniform or dichoptic dimming if factoring
eye tracking costs. Thus, using brightness rolloff is not justified
unless eye tracking is already a system requirement, in which case
brightness rolloff should be employed and can offset the ideal eye
tracker power or more than half of the Tobii device at -1 JOD for the
HTC VIVE Pro Eye. Similarly, nearly half of the ideal eye tracker
power can be offset at -1 JOD for the Meta Quest Pro.

8 LIMITATIONS & FUTURE WORK
Hardware. Conducting perceptual studies on commercial VR de-

vices allows us to develop a realistic study framework with head and
eye tracking. However, these displays have their own limitations
including optical distortions, eye tracking latency/error, inaccuracy
in color reproduction, limited contrast, etc., which influence image
quality along with our display power saving methods.

Display Mapping Algorithms. We focused on a fixed set of tech-
niques to maintain study feasibility, but alternative implementa-
tions or approaches to display mapping, such as different brightness
rolloff profiles, or combinations of multiple techniques presented
here are always possible. Further discussion of the limitations of
the discussed methods is provided in Supplement B.

Compute vs. Display Power. This work focused on reducing dis-
play power, but computational power can also be optimized, for
example, via foveated rendering [Patney et al. 2016] or adaptive
shading approaches [Jindal et al. 2021]. We leave the analysis of
these techniques to future work.
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HTC VIVE Pro Eye (OLED) Meta Quest Pro (Local Dimming LC)

Brightness Rolloff   Dichoptic Dimming   Uniform Dimming   Power Gain w/ ET

Fig. 9. Eye tracker power consumption. We conduct an analysis of gaze-contingent power-saving techniques, while considering estimations of eye tracker
power consumption. Solid lines represent power saved for three methods (brightness rolloff, uniform dimming, and dichoptic dimming), and the dotted line
represents the difference in power saved between brightness rolloff and the next best method with the same perceptual impact.

Additional Display Modalities. While our current analysis is lim-
ited to OLED and local/global backlit LC displays, it could be applied
to other display modalities, such as mini/micro-LED or liquid crys-
tal on silicon (LCOS) displays. We recommend that practitioners
leverage the template laid out in this work to provide a unified
perception–to-power-savings analysis via subjective experimenta-
tion and modeling when tackling this problem for a specific display
architecture not already included in this work.

9 CONCLUSIONS
In this work, we aimed to characterize the tradeoffs of display map-
ping techniques in terms of power savings and image quality impact.
Previous measurements of their perceptual impact were not stan-
dardized, making comparisons impossible. Motivated by this gap in
the literature, we conducted a large-scale user study to determine
the subjective quality of 6 different display mapping techniques, ob-
taining results scaled in a unified perceptual JOD scale. Our results
allowed us to provide insights into practical tasks like selecting a
display mapper for power savings, designing display primaries, or
making informed choices on power tradeoffs of using eye tracking.
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A DISPLAY MODELLING

A.1 Modelling the Point Spread Function
We model the point spread function (PSF) as a Lorentzian,

PSF(𝑥) = 𝛼

[
1 +

(
𝑥 − 𝑥0
.5𝛾

)2]−1
+ 𝜖,

where the input variable 𝑥 is the distance from an illuminated pixel,
and 𝛼 , 𝛾 , 𝜖 , 𝑥0 are learned parameters. Because the Quest Pro BLU
has significantly lower spatial resolution than the displayed image
(as is the case for most LC displays), LED light can pass through
the subtractive filter layer even when pixel intensities are set to
0. Perceptually, this leads to artifacts such as flare or decreased
contrast in LC display systems [Reinhard et al. 2010]. Methods have
been proposed to reduce these artifacts through deconvolution using
hardware-accurate measurements of the PSF. In this work, we model
the PSF in order to estimate plausible backlight LED driving values,
but do not otherwise account for these additional complex artifacts.

A.2 Local Dimming Simulation
The local dimming algorithm of the Meta Quest Pro display is not
publicly available. As such, we implement a proxy local dimming
algorithm simply to explore the power savings of such a display.

The image formation model of an LC display can be described by
LC pixel intensities and backlight driving values,

I = ILCB . (14)

where ILC are the LC panel pixel intensities and B is the result of
blurring of BLU LEDs due to LC display optical components, which
can be physically approximated by convolving the display PSF with
the BLU LED driving values, B = W𝑑 . The matrix W has shape
𝑛 ×𝑚, where 𝑛 = 𝑤 × ℎ (𝑤,ℎ are width and height of the displayed
image) and𝑚 is the number of LEDs in 𝑑 , and describes the PSF
at the corresponding LED positions. Eq. (14) implies an inverse
relationship between BLU driving values and LC pixel values, which
means that decreasing backlight LED luminance can be compensated
by an increase in LC pixel transmissivity.
To determine LED driving values for a local dimming backlight,

we compute an approximate deconvolution of the blur due to dif-
fusers and other optical components in the LC by solving a con-
strained least squares optimization problem,

min
𝑑

| |B∗ −W𝑑 | |, 0 ≤ 𝑑𝑖 ≤ 1.

B∗ is the target BLU that is being approximated by solving for the
LED driving values,𝑑 . The target BLU is computed by downsampling
the target image to the resolution of the BLU, setting each pixel
value to the maximum pixel intensity of the downsampled patch,
and then scaling to photometric units [Trentacoste et al. 2007a]. In
practice, heuristics are used to solve this optimization for real-time
computation of 𝑑 . In this work, we use the simplification described
by Trentacoste et al. [2007a,b],

𝑑 𝑗 =
B∗
𝑗
−∑

𝑖∈N W𝑗𝑖B∗
𝑖

W𝑗 𝑗
,

where N is a neighborhood of BLU LEDs.

Fig. 10. Local dimming simulation. LC pixel intensities ILC (left) are used to
filter light from the BLU B (middle) to produce the displayed image (right).

Example images of the BLU and LC images are displayed in Fig-
ure 10 for the VR Scene 1 (top row) and Sculpture scenes (bottom
row). Brighter colors in the BLU image (middle column) represent
higher LED driving value. The right column images are simulations
of what will be displayed as a result of applying Eq. (14), by multi-
plying LC pixel intensities (column 1) by BLU responses (column 2)
in Figure 10.

B DISPLAY MAPPING TECHNIQUES
We provide additional detail and discussion for display mapping
techniques described in Section 4.

B.1 Brightness Rolloff
The general form of the Gaussian rolloff curve in Equation (8) is

𝑦 = exp(−𝛽𝜙2)

where 𝑦 is relative luminance, 𝜙 is retinal eccentricity, and 𝛽 is a
constant controlling the minimum curve value. Solving for 𝛽 so that
𝛼 becomes the minimum value at the edge of the display FOV,

exp(−𝛽 ∗ (FOV/2)2) = 1 − 𝛼

𝛽 = −4 ln(1 − 𝛼)/FOV2 .

B.2 Dichoptic Dimming
This display mapping technique could lead to unintended percepts,
such as the Pulfrich Effect, which can enhance depth cues due to
slower signal processing times for lower-luminance images [Doi
et al. 2023] or cause binocular rivalry [Asano and Wang 2024; Wang
et al. 2023; Wolfe 1983].

C DEVICE SPECIFICATIONS
We list relevant device specifications in Table 2. To our knowledge,
there are no publicly available specifications related to the Quest

ACM Trans. Graph., Vol. 43, No. 4, Article 67. Publication date: July 2024.
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Table 2. Relevant device specifications.

Meta Quest Pro HTC VIVE Pro Eye
Resolution 1400 × 1660 1800 × 1920
PPD (horizontal/vertical) 19.17/18.83 14.58/13.36
Field of View 106◦ × 96◦ 98◦ × 98◦
Eye Tracker Frequency – 120 Hz
Eye Tracker Accuracy 1.249◦ − 1.813◦ 0.5◦ − 1.1◦

Pro eye tracking frequency. We use reasonable estimates from the
literature [Wei et al. 2023] for the eye tracking accuracy.

D USER STUDY DETAILS
We include additional details of the user study software implemen-
tation and data processing.

D.1 Stimuli
The scenes used in the pilot studies and main study were of reso-
lutions 4096 × 4096 for the hand-crafted scenes, and 5376 × 5376
for the LIVE-FBT-FCVR scenes. Hand-crafted scenes were captured
using the Unity Recorder, which has a maximum capture resolu-
tion of 4096 × 4096 for 360◦ stereoscopic video. The LIVE dataset
scenes contain natural motion (e.g. humans walking, clouds moving)
and the virtual scenes contain UI panels with scrolling text and a
dynamic fly-through video. Panoramic images of each scene are
displayed in Figure 11.

D.2 Pilot Studies
Pre-Pilot. The pre-pilot stimuli were set using a QUEST adaptive

staircase procedure, with thresholds measured using a Weibull-
shaped psychometric function,

Ψ(𝑥) = 𝛿𝛾 + (1 − 𝛿)
[
1 − (1 − 𝛿) exp

(
−10𝛽 (𝑥−𝑇+𝜖 )

)]
,

as implemented in the open source PsychoPy package [Peirce et al.
2019]. To select the stimuli magnitudes to be used in pilot 1, the
inverse of the Weibull curve was evaluated at 1, 2, and 3 JND. The
psychometric functions for each participant are displayed in Fig-
ure 12, with the first row corresponding to the Weibull curves for
participant 1 (P1), and the second row for participant 2 (P2). The
blank plots indicate that only one of the two users participated in
the pre-pilot for the specific display mapping.
Notably, the pre-pilot was conducted on two of the authors. As

a result, the 1 JND thresholds are lower than those in the main
study, which was conducted on naive users, for all display mappings
except for whitepoint shift. This result is understandable, because
the expert participants were aware of the types of display mappings
used and more sensitive to the techniques.

Pilots 1 & 2. After each pilot study, new stimulus magnitudes
were selected by fitting a best-fit line to the stimulus magnitude
vs. JOD data from the previous pilot. The results of this procedure
after pilot 1 and pilot 2 are visualized in Figure 13 (first and second
row correspond to pilot 1 and 2, respectively). Because many of
the magnitudes at 1 JND in the pre-pilot were close to the 1 JOD
value in the first pilot, we kept them the same in the second pilot.

Table 3. Variable strengths for each magnitude of the display mapping
techniques used in the main study. The reported numbers correspond to
the 𝛼 values described in Section 4 of the main manuscript.

Display Mapping Technique Level 1 Level 2 Level 3
• Uniform Dimming 0.17 0.32 0.45
• Luminance Clipping 0.22 0.35 0.51
• Brightness Rolloff 0.64 0.75 0.88
• Dichoptic Dimming 0.33 0.45 0.56
• Whitepoint Shift 1.76 3.46 5.2
• Color Foveation 0.58 0.76 0.93

Dichoptic dimming is missing in the first pilot data because it was
added after the first pilot was completed.

D.3 Main Study
The magnitudes used in the main study are displayed in Table 3.
We use a Python implementation of ASAP [Mikhailiuk et al. 2021],
and communicate with the rendering application in Unity to update
stimuli at each trial. The main study data scaled to JODs is displayed
in Figure 14.

E JOD VS. POWER SAVED TRANSFER FUNCTION

E.1 Fitting the Psychometric Function
Psychometric functionswere fit to themain study JOD data. The data
was first converted to units of percentage preference, as described by
Mantiuk et al. [2021]. This conversion is also visualized in Figure 15.
AWeibull function was fit to this data with additional control points
added based on the assumptions discussed in Section 7.1.1. Namely,
points at (𝛼 = 0, 0 JOD) and (𝛼max<< −3 JOD) were added during
the curve-fitting process. The psychometric curves for two of the
methods, color foveation and whitepoint shift, were not adjusted
using this procedure because the study data already produce this
saturation behavior. For example, power savings for color foveation
plateau around 23% (for OLED display), because this is the maxi-
mum power savings that the method can achieve. The psychometric
curves for each method are visualized in Figure 16. Optimization
error however, with respect to the original three data points from
the main study, may increase slightly after fitting the curve to the
two additional control points.

E.2 Relative Power Computation
We computed power consumption on two salient frustums from the
360◦ videos used in the main study. These regions were selected
based on areas where participants spent the most time fixating, us-
ing the collected head- and eye-tracking data from the main study.
To find salient regions, we used the software package from Sitz-
mann et al. [2017] which computes a saliency map given normalized
fixation coordinates.

Because the contribution of the LC panel does not vary much with
content, we discard it from the power consumptionmeasurements as
discussed in Section 3.1. Additionally, the static power consumption
(𝛿 in Equations (1) and (5)) is excluded.
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Fig. 11. Scenes used in the user study. Five scenes were used in the main user study. Left three videos original from the LIVE-FBT-FCVR database, and the
right two videos were hand-crafted by the authors.

0.10 0.15 0.20 0.25
Stimulus Magnitude

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ili

ty

Uniform Dimming (P1)

0.0 0.2 0.4 0.6 0.8 1.0
Stimulus Magnitude

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ili

ty

Luminance Clipping (P1)

0.5 0.6 0.7 0.8
Stimulus Magnitude

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ili

ty

Brightness Rolloff (P1)

0.0 0.2 0.4 0.6 0.8 1.0
Stimulus Magnitude

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ili

ty

Dichoptic Dimming (P1)

0.4 0.5 0.6 0.7 0.8
Stimulus Magnitude

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ili

ty

Whitepoint Shift (P1)

0.2 0.4 0.6 0.8
Stimulus Magnitude

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ili

ty

Color Foveation (P1)

0.15 0.20 0.25
Stimulus Magnitude

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ili

ty

Uniform Dimming (P2)

0.05 0.10 0.15 0.20 0.25
Stimulus Magnitude

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ili

ty

Luminance Clipping (P2)

0.5 0.6 0.7
Stimulus Magnitude

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ili

ty

Brightness Rolloff (P2)

0.2 0.3 0.4 0.5
Stimulus Magnitude

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ili

ty

Dichoptic Dimming (P2)

0.2 0.3 0.4 0.5 0.6 0.7
Stimulus Magnitude

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ili

ty

Whitepoint Shift (P2)

0.00 0.05 0.10 0.15 0.20
Stimulus Magnitude

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ili

ty

Color Foveation (P2)

Fig. 12. Pre-pilot staircase results. Psychometric curves fit to the pre-pilot study results for both participants. 𝑥-axis is stimulus magnitude and 𝑦-axis is
probability of detection. Empty plots were conditions not done by P1.
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Fig. 13. Extrapolating pilot data. The top row shows results after the first pilot, and bottom row results after the second pilot. 𝑥-axis represents stimulus
magnitude, 𝛼 , and the 𝑦-axis shows perceptual impact (JODs). Missing plot refers to a condition added after the first pilot.

E.3 Validation Study
This experiment aims to validate the accuracy of the assumptions
made when fitting psychometric curves to the main study data.

Hardware. We chose to conduct the study with the HTC VIVE
Pro Eye, with stimuli magnitudes corresponding to 20% and 40%
power saving targets as computed by the OLED power model. A
similar study could have been conducted for the Quest Pro’s LC

display model, but we decided that using the OLED model would
allow us to test more display mapping techniques, such as color
foveation.

Participants. We recruited 𝑁 = 5 naive participants, none of
whom participated in the pilot or main studies. The same eye track-
ing calibration and vision testing were done as in the main study.
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Fig. 14. Main study results. The main study data was scaled to units of
JODs (𝑦-axis) for three increasing levels of magnitude (𝑥-axis). Vertical error
bars represent 95% percent confidence intervals.
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Fig. 15. JODs vs. % preference. We replicate the plot from Mantiuk et al.
[2021], which maps JODs to interpretable units of percentage preference.
The difference in 1 JOD between two techniques, A and B, indicates 75%
percent selection of A over B.

Stimuli. Two previously unused scenes from the LIVE-FBT-FCVR
Database were presented in this study (Bar and Bridge scenes).

Experimental Procedure. Participants completed a 2IFC study with
the same task as the main study. Unlike the main study, we con-
ducted this experiment with a full pairwise design within the power-
saving conditions. That is, for stimuli magnitudeswithin each power-
saving level (20% and 40%), all combinations of scenes and display
mappings were directly compared against each other. For 20% power
savings, this resulted in 2 scenes× (5 displaymappings + 1 reference)
= 12 conditions and for 40% power savings, 2 scenes × (4 display
mappings + 1 reference) = 10 conditions. The full pairwise study
contained 𝐶 (12, 2) + 𝐶 (10, 2) = 111 conditions. We opted to dis-
card whitepoint shift from this study because its perceptual impact
(JODs) at 20% and 40% savings is very large, making it redundant.
In total, the study took approximately 30 minutes to complete. See
Figure 17 for visualization of validation study conditions.

Table 4. Validation study vote counts. Two columns under each participant
represent vote counts for the 20% power saving condition and 40% conditions,
respectively. The second column for color foveation is left blank as it was
not studied in the 40% condition trials.

P1 P2 P3 P4 P5 SUM
• Reference 14 13 19 16 17 13 16 14 18 13 84 69
• Uniform Dimming 17 9 11 8 12 5 7 3 13 5 60 30
• Luminance Clipping 0 0 2 3 2 0 4 1 5 3 13 7
• Brightness Rolloff 12 14 16 12 17 14 15 11 13 14 73 65
• Dichoptic Dimming 13 4 10 1 10 8 9 11 8 5 50 29
• Color Foveation 4 – 2 – 2 – 9 – 3 – 20 –

Results. We visualize the results as a plot, in Figure 17, of the JOD
values evaluated by the psychometric curves vs. the validation study
data scaled to JODs. The identity line represents a hypothetical per-
fect match between the psychometric fit and validation. Spearman’s
rank-order correlation analysis showed a strong positive correla-
tion between JOD scores predicted by the transfer functions and
those collected from the validation study, (𝑟 = 0.943, 𝑝 < .005 and
𝑟 = 0.999, 𝑝 << .001, for 20% and 40% savings, respectively). The
tabulated study results in Table 4 show the vote counts for each
display mapping technique.

F WALL-PLUG EFFICIENCY DATASET
We use data from five separate datasets aggregated by Hahn [2016]
– Narukawa et al. [2010], Hahn et al. [2008], Peter et al. [2008],
Schiavon et al. [2013], and Steigerwald et al. [1997] – to determine
wall-plug efficiency (WPE) in Equation (13), displayed in Figure 18.
In order to sample from this data at continuous wavelengths 𝜆, we
fit a linear function to the data, relating 𝜆 to WPE.
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Fig. 18. Wavelength versus wall-plug efficiency data. Wall-plug efficiency
data for LEDs is aggregated across five datasets, and lines are fit to the
measurements.
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Fig. 16. Psychometric fitting. We fit a psychometric function to the main user study data after perceptual scaling and conversion to percentage preference.
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Fig. 17. Validation study conditions and results. The two conditions used in the validation study, 20% and 40%, are visualized as gray dotted lines (left plot).
The ranking of display mappings is displayed as circle markers to the right of the first figure. JOD scores predicted by the psychometric curve fit to the main
study data (𝑥-axis) against JOD scores from the validation study (𝑦-axis) are displayed (right two figures). Vertical error bars show 95% confidence intervals.
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