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Abstract—We study the visual quality judgments of human
subjects on digital human avatars (sometimes referred to as
“holograms” in the parlance of virtual reality [VR] and aug-
mented reality [AR] systems) that have been subjected to dis-
tortions. We also study the ability of video quality models to
predict human judgments. As streaming human avatar videos
in VR or AR become increasingly common, the need for more
advanced human avatar video compression protocols will be
required to address the tradeoffs between faithfully transmitting
high-quality visual representations while adjusting to changeable
bandwidth scenarios. During transmission over the internet,
the perceived quality of compressed human avatar videos can
be severely impaired by visual artifacts. To optimize trade-
offs between perceptual quality and data volume in practical
workflows, video quality assessment (VQA) models are essential
tools. However, there are very few VQA algorithms developed
specifically to analyze human body avatar videos, due, at least
in part, to the dearth of appropriate and comprehensive datasets
of adequate size. Towards filling this gap, we introduce the
LIVE-Meta Rendered Human Avatar VQA Database, which
contains 720 human avatar videos processed using 20 different
combinations of encoding parameters, labeled by corresponding
human perceptual quality judgments that were collected in six
degrees of freedom VR headsets. To demonstrate the usefulness
of this new and unique video resource, we use it to study and
compare the performances of a variety of state-of-the-art Full
Reference and No Reference video quality prediction models,
including a new model called HoloQA. As a service to the
research community, we publicly releases the metadata of the
new database at https://live.ece.utexas.edu/research/LIVE-Meta-
rendered-human-avatar/index.html.

Index Terms—virtual reality, video quality assessment, 3D
mesh, human avatar video, six degrees of freedom

I. INTRODUCTION

RECENT advancements in head-mounted displays
(HMDs) and extended reality (XR) technologies

have made it possible for people to engage in impressive
immersive 3D experiences. Among these, virtual reality
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(VR) applications now allow for virtual work meetings [1],
entertainment, gaming, and education. This “metaverse”
of virtual possibilities is also envisioned to include rich
augmented reality (AR) applications, whereby users can
visualize and interact with the real world, supplemented
by graphical overlays, inserted objects, realistic 3D avatars
or digital twins, and the ability to communicate with one
another by sound and sight from afar [2], [3]. A major
goal in this direction is to give users the ability to interact
more intimately and personally via high-quality wireless
communications-enabled shared VR or AR experiences.

In one promising scenario relevant to both workplace and
social scenarios, two or more users can visually and remotely
interact in a virtual space, each person represented by an
animated avatar, or “hologram,” having facial expressions,
body movements, and hand gestures that replicate those of
the actual participants. Indeed, as computing hardware, image
capture, and graphical processing technologies have advanced,
methods for creating high quality, realistic human avatars
have significantly improved [4], [5]. These 3D human avatar
videos are normally represented as dynamic 3D meshes with
textured color surfaces. Human avatar model creation involves
capturing multiple images from different viewpoints of real
world objects or people using high-speed cameras, then re-
constructing them into mesh or point cloud geometric and
color representations that can be rapidly rendered for 3D
visualization. Here we focus on textured mesh data, although
point clouds are easily converted into 3D polygonal mesh
formats. As 3D digital twins or human avatars become increas-
ingly realistic and data heavy, and as HMDs continue to have
improved in space-time resolutions, visual data streams having
much higher bandwidths will require perceptually optimized
compression tools to ensure efficient, high quality throughput
and visualizations.

The possibility of practical human avatar data transmission
over the wireless internet presents significant practical chal-
lenges. To be able to communicate high quality 3D human
avatar videos in real time, volumetric compression is required,
which can adversely impact the perceived visual quality of
immersive 3D experiences. Since real-time communication
is required to enable seamless human interactions, the com-
pression and transmission protocols must minimize temporal
and rotational latencies to minimize sensations of lag. Indeed,
proposed metaverse infrastructures typically aim to constrain
the end-to-end delay (from cloud to client) to less than 20 ms
[6].

Further, visual artifacts arising from compression and ren-
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dering can significantly degrade the visual quality of hu-
man avatar videos. Motivated by the successes of streaming
and social media platforms that perceptually optimize video
throughput using video quality prediction models, it is highly
desirable to be able to quantitatively model human avatar video
quality. Given models, video quality prediction algorithms may
be devised to measure and control tradeoffs between percep-
tual human avatar quality and data bandwidth, by providing
feedback that can be used to adjust encoder settings.

Assessing the quality of human avatar videos presents
unique challenges as compared to traditional video formats.
Traditional 2D video quality assessment (VQA) methods are
insufficient for human avatar videos, which require accounting
for the added complexities of depth perception, spatial reso-
lution, and the dynamic nature of 3D meshes. The subjective
experience of users in VR is influenced not only by the visual
fidelity but also by the interactivity and realism of the human
avatars, necessitating new approaches to VQA that can capture
these multifaceted aspects.

VQA research encompasses two general categories of study:
subjective and objective video quality. Subjective studies in-
volve the collection of substantial amounts of human subjec-
tive judgments of video quality [7]. Subjective quality datasets
can be used to create, compare, and benchmark objective video
quality models. However, existing databases of volumetric
picture data are quite limited in terms of their sizes, content
varieties, and varieties of realistic distortions. Many of these
have deployed 2D displays when conducting human subjective
studies, thereby restricting viewpoint, depth sensation, and
immersion. Few studies have employed HMDs which allow
the study participants to experience immersion in VR or AR
[8]–[15].

Conducting studies of VR or AR using modern headsets
is important, because the effects of experiencing immersion,
six degrees of freedom (6DoF) of movement, and wide-field
video compositions can be accounted for. The developments
of modern VQA models suitable for analyzing and predicting
the quality of VR and AR videos, including “human avatar”
videos, requires the creation of subjective quality databases
that capture these aspects.

Given the urgent need to improve the quality of immersive
experiences in VR and AR, and to support the development
of robust VQA models, we have created a new psychometric
resource called the LIVE-Meta Rendered Human Avatar VQA
database. This database addresses the limitations of existing
datasets by providing 720 videos derived from 36 source
sequences of dynamic human human avatar videos, rendered
with varying degrees of spatial and temporal distortions, which
were viewed and quality rated by 78 human subjects in an im-
mersive 6DoF VR environment, making it a valuable resource
for advancing human avatar video streaming. To demonstrate
the value of the new subjective dataset, we also evaluated
the performances of a variety of state-of-the-art (SOTA) VQA
models on it. We also include new human avatar video quality
predictors - HoloQA [16] of our own design, and test and
compare them on the new dataset. HoloQA leverages recent
advances in visual neuroscience, information theory, and self-
supervised deep learning to predict the quality of rendered

Digital Human Holograms in VR and AR applications. By
adopting a Mixture-of-Experts approach, HoloQA captures
both low-level pixel quality and high-level content-aware fea-
tures specific to the human body. This method achieves SOTA
performance on the LIVE-Meta Rendered Human Avatar VQA
database and demonstrates competitive performance across
other digital human hologram databases. The code for HoloQA
will be available post peer review.

We summarize our contributions as follows:
1) Largest Most Comprehensive Human Avatar Per-

ceptual Quality Database: The new LIVE-Meta Hu-
man Avatar VQA Database contains 720 distorted and
pristine stimuli from 36 different source human avatar
videos, all rated by 78 human subjects, making it the
largest 3D graphics VQA database.

2) Advancing Immersive Human Avatar Video Stream-
ing: We further advanced progress on understanding the
perception and predictability of streamed avtar videos
by evaluating a wide variety of SOTA VQA models on
it, by comparing their abilities to predict human quality
judgments.

3) Resource for Developing and Evaluating VQA Algo-
rithms: The new LIVE-Meta Rendered Human Avatar
VQA Database offers a significant and needed resource
for developing and evaluating both FR and NR VQA
algorithms tailored for human avatar VR videos. We
showed that the new database is also useful for ana-
lyzing, benchmarking, and designing FR and NR VQA
algorithms.

The remainder of the paper is organized as follows. Section
II provides an overview of previous subjective and objective
VQA quality studies on 3D point clouds and meshes. Sections
III and IV introduce the processes of content creation for
the new human avatar VQA database, and explain the study
design protocol and subjective data acquisition processes, re-
spectively. Section V shows the value of the new psychometric
resource by comparing the performance of a variety of SOTA
VQA models on it. We also describe and analyze new models.
Finally, Section VI concludes the paper and discusses potential
directions for future work.

II. RELATED WORKS

This section reviews previous studies related to the sub-
jective and objective quality assessment of 3D graphics and
human avatar videos. We discuss various prior methodologies
and their relevance to our research.

A. Subjective 3D Graphics Quality Assessment

Since 2014, several datasets have been developed and uti-
lized for evaluating the quality of 3D graphics, represented
as 3D meshes and point clouds, with and without appearance
attributes. A number of research groups have conducted sub-
jective quality assessment tests involving these types of 3D
data. Early studies focused on evaluating static object contents
displayed on 2D screens [17], [18], [30]–[32]. Some users of
these datasets [31], [32] converted the original point clouds
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TABLE I
A SUMMARY OF EXISTING PUBLICLY AVAILABLE 3D GRAPHICS IQA/VQA DATABASES INCLUDING HUMAN FIGURES WITH SUBJECTIVE SCORES

OBTAINED USING MONITORS

Dataset name # Stimulus #Source contents # Ratings
per Video Resolution Model Degradation type Duration Display Device Interaction method Rendering mode

Alexiou et al., 2017 [17] 99
9 (4 objects
+ 5 humans) 20 147K - 14M points Static V-PCC, G-PCC N/A 27” monitor Interactive Point

Torlig et al., 2018 [18] 63
7 (4 objects
+ 3 humans) 20 482K - 857K points Static Octree-based compression + JPEG N/A 27” Monitor Interactive Point

vsenseVVDB, 2019 [19] 32 2 humans 19 62K-495K points Dynamic V-PCC, downsampling 6.6 sec 2D monitor Interactive Point

M-PCCD, 2019 [20] 244
8 (7 objects
+ 1 humans) 10+7+15 150K - 73.8M points Dynamic Octree pruning, 3DTK compression 24 sec 49”, 55” monitors Passive Point

vsenseVVDB2, 2020 [21] 136 8 humans 23
VVs: 402K - 406K points
8i: 729K - 1.06M points Static & Dynamic

Mesh: Draco+JPEG
Point Clouds: G-PCC, V-PCC 10 sec 24” monitor Passive Point, Mesh

Cao et al., 2020 [22] 120 4 humans 22 2048×2048 (texture) Dynamic
Mesh: TFAN+FFmpeg+distance

Point Clouds: V-PCC+FFmpeg+distance 10 sec 24” monitor Passive Point, Mesh

Perry et al., 2020 [23] 90 6 humans
16+15+
15+27 1M points Static G-PCC, V-PCC 12 sec

31”, 49”,
55” monitors Passive Point

IRPC, 2021 [24] 54
6 (4 objects
+ 2 humans) 18-20 272K - 4.8M points Static PCL, G-PCC, V-PCC 10 sec 23” monitor Passive Point

SJTU-PCQA, 2021 [25] 420
10 (4 objects
+ 6 humans) 16 N/A Static

Octree-based compression, downsampling,
color noise, geometry noise 15 sec 21.5” monitor Interactive Point

LS-PCQA, 2022 [26] 1240
104 (76 objects
+ 28 humans) 16 N/A Static & Dynamic

Color noise, geometry noise, V-PCC, G-PCC,
AVS, Octree-based compression 20 sec 21.5” monitor Interactive Point

SJTU-H3D, 2023 [27] 1120 40 humans 40 2048×2048 (texture) Static
Position, UV map, and texture compression, geometry/color noise,

face simplification, and texture downsampling 8 sec 4K iMac monitor Passive Mesh

DHHQA, 2023 [28] 1540 55 humans (heads) 20 4096×4096 (texture) Static
Surface simplification, position compression, UV compression,

texture sub-sampling, texture compression, color noise, geometry noise N/A 4K iMac monitor Passive Mesh

DDH-QA, 2023 [29] 800 2 humans 41 2048×2048 (texture) Dynamic
Color noise, geometry noise, texture compression, texture downsampling,

position compression, UV map compression,
skeleton binding error, motion range unnaturalness

N/A 4K iMac monitor Passive Mesh

TABLE II
A SUMMARY OF EXISTING PUBLICLY AVAILABLE 3D GRAPHICS IQA/VQA DATABASES RATED WITH SUBJECTIVE SCORES OBTAINED USING HMDS

Dataset name # Stimulus #Source contents
# Ratings
per Video Resolution Model Distortion type Duration Display Device Interaction method Rendering mode

Alexious et al., 2017 [8], [9] 40 5 objects 21 22K - 36K points Static Gaussian noise, octree-pruning N/A
AR

(Occipital Bridge) Interactive Point

Nehmé et al., 2019 [10] 80 5 objects 30 250K - 600K points Static
Geometric quantization, color quantization,

color distortions 6, 10 sec
VR

(HTC Vive Pro) Passive Mesh

Gutiérrez et al., 2020 [11] 28 4 objects 24 N/A Static Geometry quantization, JPEG compression 15 sec
MR/AR

(Microsoft HoloLens) Interactive Mesh

Subramanyam et al., 2020 [12] 72 8 humans 27+25 N/A Dynamic the MPEG anchor, V-PCC 5 sec
VR

(Oculus Rift) Interactive Point, Mesh

PointXR, 2020 [13] 40 5 objects 20 4096×4096 Static G-PCC 13.7, 23 sec
VR

(HTC Vive Pro) Interactive Point

SIAT-PCQD, 2021 [14] 340
20 (10 objects
+ 10 humans) 38 145K - 1.6M points Static V-PCC 20 sec

VR
(HTC Vive) Interactive Point

Nehmé et al., 2021 [15] 480 5 objects 24 216K - 1.3M points Static
Geometric quantization, color quantization,

color distortions 10 sec
VR

(HTC Vive Pro) Interactive Mesh

LIVE-Meta Rendered Human Avatar
VQA Database, 2023 720 36 humans 26 2048×2048 (texture) Dynamic

Temporal artifacts, reduced texture resolution,
reduced frame rate 15 sec

VR
(Oculus Quest Pro) Interactive Mesh

into polygonal meshes via surface reconstruction methods
prior to using them, or vice-versa.

Previous studies primarily concentrated on colorless point
clouds and only explored human responses to a limited range
of degradations, such as downsampling and noise generation.
The SJTU-PCQA database [25] introduced additional relevant
compression/distortion types, including geometric distortions,
Gaussian noise, and octree-pruning. Later, Geo-Metric [33]
introduced more geometric distortions, including 4 types of
noise, smoothing, and simplification.

The emergence of a real-time point cloud codec for 3D
immersive video [34] in 2017 helped drive research into
the development of point cloud quality assessement (PCQA)
methodologies. This codec found applications in immersive
and augmented communication scenarios, and was later con-
sidered as a standardized point-cloud compression solution
by MPEG. The Video-based PCC (V-PCC) quality prediction
model, which targeted dynamic point clouds, was applicable
to colored and rendered point clouds [19], leading to its
use in evaluating advanced point cloud codecs in subjective
PCQA studies. These studies revealed that texture distortions
generally had a greater impact on perceived quality than
geometric distortions, particularly when evaluating images of
human figures.

Later, many databases incorporated dynamic 3D graphics
to represent the movement of 3D objects, resulting in tem-

poral content variations and temporal artifacts [19]–[22], and
including moving human figures [12], [19]–[21], [25], [26],
[29].

Subjective comparisons between point clouds and their
corresponding reconstructed meshes were first studied in [32],
but no definitive conclusions were drawn regarding the su-
periority of either representation. A later study [21] was the
first attempt to compare textured meshes and colored point
clouds in the context of compression. This study found that
textured meshes tend to exhibit superior quality at higher
bitrates, whereas colored point clouds demonstrate enhanced
performance in scenarios involving limited bandwidth and
storage capacity. Another study [22] investigated the combined
impacts of viewing distance and bitrate on the perceptual
quality of compressed 3D human figure sequences. Their
findings suggested that viewers preferred meshes at viewing
distances of 1.5 meters, while point clouds were generally
favored at lower bitrates.

Another subjective database, named IRPC [24], was pub-
lished to investigate the effects of coding and rendering on
the perceptual quality of point clouds, without considering
color attributes. These datasets were limited in terms of con-
tent, distortion types, and representation of prevailing codecs,
making them inadequate for developing learning-based PCQA
algorithms.

Different subjective evaluation methods, including the Ab-
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solute Category Rating with Hidden Reference (ACR-HR), and
Double Stimulus Impairment Scale (DSIS) were considered
and compared for subjective VR studies [10], [15]. Their
results suggested that DSIS led to better accuracy than ACR-
HR, while DSIS participants required more time to rate the
videos.

One novel quality evaluation methodology proposed by
Torlig et al. [18] allowed the human subjects to interact with
the viewed content by zooming, rotating, and translating, using
a mouse. Some subsequent studies continued to have subjects
passively view and assess perceptual quality [20]–[24], [27]–
[29], other studies allowed subjects to manipulate 3D graphical
content on 2D monitors [17], [19], [25], [26]. However, these
interactive datasets usually only encompassed static objects.

Towards providing more realistically immersive user expe-
riences in human studies, several researchers employed 3D
visualization tools, including HMDs, with subjects operating
in VR and AR environments [8]–[15], including 3DoF and
6DoF VR environments [14]. Subramanyam et al. [12] com-
pared viewing conditions enabling 3DoF and 6DoF VR and
developed the PointXR toolbox for conducting PCQA in VR
environments [13]. These studies explored different aspects
of subject mobility, fixed positioning, navigation using head
movements alone with 3DoF [12], and free body navigation
in a room with 6DoF [13]. One study focused on subjective
PCQA in 6DoF VR environments [14], resulting in a sub-
jective database called SIAT-PCQD [14] with compression-
induced combinations of geometric and texture distortions.
They also proposed two projection-based objective quality
evaluation methods.

To our knowledge, just seven previous 3D graphical human
studies have been conducted using VR and AR HMDs [8]–
[15], and only one of them includes dynamic human figures
[12], as indicated in Table II. There are no 3D graphi-
cal subjective quality datasets that include rendered human
avatars impaired by spatial and temporal distortions, viewed
by human subjects in a 6DoF VR environment. Currently
available datasets are insufficient to conduct studies of such
deep, immersive experiences. Therefore, there is a need for
such datasets, which are the kind of important scientific tools
that are needed to develop AR/VR quality prediction models,
which in turn are needed to perceptually optimize process-
ing protocols such as rendering, scaling, and compression.
Towards addressing these needs, we have created such a
perceptual resource, which we call the LIVE-Meta Rendered
Human Avatar VQA Database. We describe the details of
construction, content, and experimental design of this new
dataset in the following sections. However, Table I supplies
a basic comparison of existing 3D graphics datasets in terms
of size, content, distortion types, and display devices.

B. Objective 3D Graphics Quality Assessment
Over the last decade, numerous PCQA and mesh compres-

sion datasets have been developed, leading to the introduction
of several objective quality assessment models specifically
designed for 3D graphics. Next we discuss objective video
quality assessment models designed specifically for the anal-
ysis of point cloud and mesh videos.

1) Objective Point Cloud Quality Assessment Models: FR
VQA models are commonly used to evaluate the quality of
point clouds. These FR models can in turn be classified as
point-based models or as projection-based models [18]. They
can also be further categorized by the type of distortion type
being evaluated, whether geometric texture-based, or some
combination.

Point-based FR VQA models have been proposed to evalu-
ate specific types of point cloud distortions, such as geometry
and color. While these models offer the advantage of com-
puting explicit information that can be stored in point cloud
formats and have been utilized in recent studies, they have
been found to poorly predict visual quality across different
types of content [35].

Projection-based models project both reference and test
point clouds onto six planes. This allows the application of
conventional 2D objective video quality models to directly
measure geometric and color artifacts [18]. The processes of
real-time voxelization and projection also reduce the compu-
tational complexity of VQA.

For example, in [25], a projection-based approach was
employed where 3D point clouds were projected onto six
perpendicular cubic faces. Weights were then computed and
applied on color texture and depth images from the different
projection planes, then summed to generate the final quality
index. Excluding pixels that belong to the background can
improve the accuracy of quality prediction [36]. Increasing
the number of projected views only moderately improves pre-
dictions, while incorporating user interactivity information can
enhance performance [36]. When viewing inanimate objects,
viewers take longer to access the content; when viewing hu-
man body models, frontal and face views consistently receive
more attention [37].

Consequently, frontal views are often deemed the optimal
configuration in human body datasets, while a greater variety
of perspectives better represents scenes containing inanimate
objects. However, models based on these premises tend to be
viewpoint-dependent [38].

In point cloud applications, it is often impractical to obtain
original point clouds because of storage limitations and inade-
quate communication bandwidths. In such instances, using FR
VQA models may be infeasible. NR quality assessment mod-
els, which estimate point cloud quality without the availability
of original point clouds, are the necessary instruments in such
applications.

When evaluating the visual quality of point clouds, it is
important to consider both static and dynamic aspects, as
humans visualize point clouds simultaneously in space and
time. Consequently, VQA models that can account spatio-
temporal content/distortions offer the greatest potential quality
prediction power. One such model called VQA-PC [39] uti-
lizes a trainable 2D-CNN and pre-trained 3D-CNN modules to
extract spatial and temporal features. By treating point clouds
as moving camera videos, VQA-PC advanced the field of
projection-based PCQA, leveraging both static and dynamic
views.

2) Objective Mesh Quality Assessment Models: Algorithms
that have been designed to evaluate the visual quality of 3D
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meshes can be generally categorized into two types: model-
based ones, which operate directly on the 3D models [40]–
[42], and image quality assessment (IQA) models which
operate on rendered snapshots of 3D models [43], [44]. Most
model-based approaches lead to FR models, and are inspired
by successful IQA models. Model-based NR mesh quality
algorithms [45]–[47] are generally able to predict the quality
of 3D meshes when there are geometric distortions, but usually
do not address color distortions. However, the NR model
in [48] operates on 3D color meshes by extracting quality-
aware geometric and color features which are integrated into
quality scores using a support vector regressor (SVR). This
model was extended to assess both 3D colored point cloud
and mesh models in [49], whereby quality-aware features
are extracted using 3D natural scene statistics and entropy
of geometric and color information. These features are then
processed using an SVR to predict perceived quality, providing
a robust framework for NR quality assessment of various 3D
content types.

A variety of deep learning-based models trained to analyze
the quality of 3D meshes have been proposed. Abouelaziz et
al. [47] train a CNN using hand-crafted perceptual geometric
features extracted from 3D meshes. They also proposed a
later model that extracts feature vectors along 3 different
CNN paths, then combines them [50]. However, these deep
models only consider geometric meshes without analyzing
color/texture attributes. The authors of [51] trained a learning-
based NR model for predicting the quality of textured meshes,
using a large-scale dataset of more than 343k textured meshes.
Their NR models are image-based; hence their approach takes
the approach of transferring the complex task of mesh quality
prediction to the simpler one of IQA.

III. LIVE-META RENDERED HUMAN AVATAR VQA
DATABASE

The LIVE-Meta Rendered Human Avatar VQA Database
consists of 720 video sequences created by adding compres-
sion artifacts to 36 pristine human avatar videos using 20
different encoding parameter settings. These videos were used
as stimuli in a laboratory-based human subjective study of
human avatar video quality. Several sample frames depicting
standing and sitting poses from the human avatar videos are
shown in Fig. 1. Next, we provide a detailed description of the
dataset preparation, including obtaining the source sequences,
protocol for adding artifacts, and the volumetric simulation-
rendering pipeline.

A. Source Sequences

We purchased 36 pristine human avatar videos from the
Metastage shop, tabulated by title in Table III. Metastage
recorded individuals from various angles using 106 cameras
and reconstructed their actions and emotions into 3D Unity
assets at a texture resolution of 2048×2048 wrapped with MP4
mesh textures. Each human avatar has a mesh polycount of
approximately 20,000 triangles.

The original durations of the 36 reference videos, which
ranged from 14 to 32 seconds, was clipped to 14 to 15

(a) 27-Carl Standing Business (b) 09-Robyn Casual Talking

(c) 21-Julia Seated Talking (d) 25-Luke Seated Small Talk

Fig. 1. Sample frames of (a) (b) standing and (c) (d) sitting human avatar
videos from the LIVE-Meta Rendered Human Avatar VQA Database.

seconds to facilitate practical use in the human study. Through
a trial study involving three participants familiar with VR
headsets, and two more participants unfamiliar with them, we
determined that 15 second durations are sufficient to enable
subjects to rate the video quality. Two of the participants expe-
rienced dizziness after approximately 30 minutes of viewing,
so we avoided sessions longer than this to prevent feelings of
discomfort caused by using the VR headsets.

To ensure a balanced representation, the 36 videos were
selected based on demographic characteristics, attire colors,
and poses including standing and sitting but excluding walking
and dancing. Subjects having distracting accessories, such as
doctor’s stethoscope, were excluded. As shown in Table III, the
set of pristine videos were divided into six video groups, each
containing a diverse mix of genders, skin colors, poses, and
clothing colors. Videos of the same individual were allocated
to different groups, to prevent repetition in any of the sessions
of the human study, as described in Section IV-C.

B. Video Distortions

Table IV tabulates the 20 different distortion settings that are
meant to simulate events that might occur during cloud stream-
ing, yielding a total of 720 videos. These were generated using
a special-purpose application tool which we will introduce in
Section IV. The Table shows that the distortions are indexed
from 1 to 20. This includes the 36 pristine reference videos
(index = 1), each of which was processed with eight single
distortions (index = 2 to 9) and 11 combinations of multiple
distortions (index = 10 to 20).

Among the single distortions, delay artifacts arise when
the presumed viewing angle at which the mesh is generated
differs from the viewer’s actual current viewing angle be-
cause of processing or communication latencies. The delays
ranged from 100 ms to 300 ms, which are tolerable in
human avatar video streaming. Delays exceeding 400 ms could
significantly degrade user experiences, leading to potential
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TABLE III
GROUPINGS OF METASTAGE SHOP HUMAN AVATAR VIDEOS WITH DIVERSE ATTRIBUTES OF GENDER, SKIN COLOR, POSES AND CLOTHING, TO AVOID

REPETITION WITHIN SESSIONS

Study Group A Study Group B Study Group C
Video Group 1 Video Group 2 Video Group 3 Video Group 4 Video Group 5 Video Group 6

01-Natasha Serious Talking
06-im Listening Casual
07-Robyn Seated Talking
11-Wendy Listening Casual
13-Terence Seated Listening
16-Frank Listening Casual

04-Jim Listening Business
19-Deena Listening Casual
22-Julia Serious Talking
24-Doctor Luke Seated Listening
28-Carl Listening Business
32-Jenny Sitting Casual

02-Natasha Seated Listening
08-Robyn Listening Casual
14-Frank Casual Talking
20-Deena Casual Talking
26-Luke Seated Listening Party
31-Amanda Seated Listening

05-Jim Standing Business
17-Deena Listening Business
23-Luke Study Chart
29-Carl Serious Talking
34-Jenny Seated Listening
36-Sophie Typing

03-Jim Serious Talking
09-Robyn Casual Talking
10-Wendy Listening Business
12-Terence Seated Talking
15-Frank Standing Casual
21-Julia Seated Talking

18-Deena Presentation
25-Luke Seated Small Talk
27-Carl Standing Business
30-Amanda Listening
33-Jenny Casual Talking
35-Sophie Seated Typing

user disengagement in real-world scenarios. Distortions from
color resolution/scaling ranged from 480p to 2048p (pristine),
while frame rates were varied over 10 fps to 30 fps. The
delay distortions present visually as temporal self-occlusions,
resulting in unnatural visual overlaps. Distortions from color
resolution/scaling manifest as blur or blockiness. From our
observations, a color resolution at 1600p is the threshold where
distortions start becoming noticeable. Specifically, 1080p is
considered fair quality, 960p is between fair and poor, 720p
is poor, 600p is between poor and bad, and 480p is bad,
representing the worst-case scenario we considered. Frame rate
distortions cause visual sensations of temporal discontinuity or
“statter,” especially when there is rapid motion. Frame rates
of 20 fps or 15 fps are generally tolerable, but at 10 fps, the
quality is significantly impacted.

The combinations of multiple distortions are divided into
three categories: “moderately limited bandwidth conditions,”
(MLBC) “heavily limited bandwidth conditions,” (HLBC) and
“severely limited bandwidth conditions” (SLBC), as shown in
Table IV. These are combinations of the single distortions, but
also include distortions from reduced depth resolution. Our
choice of parameters resulted in a diverse and wide range
of perceptual distortions and contents to ensure noticeable
differences between the various distortion levels. This diversity
was intended to cover a broad spectrum of real-world scenarios
and to thoroughly evaluate the robustness of video quality
assessment models.

Regarding the quality of the pristine reference videos (index
= 1), due to limitations of the Metastage capture system,
human avatar reference videos were reconstructed to closely
resemble the original source human avatar videos. Although
the capture device and reconstruction technology impose cer-
tain limitations, these reference videos are considered pristine
for the purpose of our study. The background used in these
videos is a high-quality static PNG image, which does not
significantly impact the overall evaluation of the photorealistic
foreground avatars. Our statistical post-analysis in Section
IV-E indicates that this combination was acceptable to the
study participants.

C. Volumetric Simulation-Rendering Pipeline

The conversion from Metastage raw mesh data to RGB-
D was accomplished via a volumetric simulation-rendering
pipeline, a simplified model of which is shown in Fig. 2.

Initially, the Metastage mesh was loaded via the Metastage
Unity plugin which we will introduce in Section IV-B. The
plugin output was a mesh with texture animating at 30 fps. The
mesh integrated into the Unity rendering pipeline, allowing

placement in the scene and correct depth rendering relative
to other 3D objects. To better anchor the representation in
the scene, a shadow effect from the mesh to the floor was
applied. Additionally, the mesh representation allowed the
OVR plugin, which is a tool that facilitates the integration of
virtual reality features into Unity projects, to seamlessly render
them stereoscopically in the VR headset, providing users with
the experience of viewing a person in front of them.

The input .mp4 files were stored in the streaming assets
folder of the Unity project. This allowed users to modify the
video files without modifying and building the application.
Users of the Unity application can add new .mp4 videos and
update the configuration file, and the application will load
them dynamically. The video data was processed by the GPU
and loaded into vertex and index buffers. This process was
internally controlled by the Metastage plugin. The .mp4 format
used by Metastage is a proprietary extension that includes
vertices, indices, and texture. Once the data was loaded into
GPU buffers by the plugin, we could render it. The bitrate was
relatively high, as Metastage decoded and read every vertex
and triangle per frame of the capture. The reconstructed mesh
typically consisted of 15,000 to 30,000 vertices and 20,000 to
40,000 triangles per frame, with a standard frame rate of 30
fps.

Subsequently, the GPU buffers containing the mesh, as filled
by Metastage, were rendered using a simple unlit shader.
We rendered the mesh from the perspective of the sensor to
simulate various artifacts in a later stage. This render pass
generated two textures: color and depth. The color texture
simulated what the sensor would observe, while the depth
texture simulated what an ideal depth sensor would perceive.
Both color and depth resolutions could be toggled.

Finally, with the color and depth textures available, we
rendered the Metastage mesh again from the headset’s point
of view. We utilized a custom shader that reprojected the
previously produced color and depth textures onto the mesh,
taking into account the sensor’s perspective. Additionally,
noise could be added to the sampled depth data to simulate a
physical depth sensor. This data was then used to modify the
Metastage mesh to conform to the sampled depth data. The
depth texture was also employed to calculate self-occlusion
from the sensor’s perspective. Instead of using the original
high-fidelity Metastage texture, the color texture was sampled
to simulate lower resolution and edge color transfer. It is
important to note that if we wish to simulate any topical
artifacts or treatments, we must provide data to the shader
so that it can identify areas of interest in 3D space (UV space
is not useful due to Metastage encoding technology jitter).
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I. Metastage Capture II. Render Mesh to Texture III. Render Mesh on Screen
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Fig. 2. A simplified flow diagram of the volumetric simulation-rendering pipeline used in the privately released Unity tool provided by the Meta platform.
This diagram highlights the key stages in the conversion from raw mesh data to RGB-D, including the loading of Metastage mesh, rendering from the sensor’s
perspective, and reprojecting textures from the headset’s point of view.

TABLE IV
LIST OF 20 DISTORTION SETTINGS USED IN THE STUDY, COVERING A

RANGE OF DELAYS, COLOR RESOLUTIONS, AND FRAME RATES.

Index Delay (ms)
Depth

Error (m)
Depth

Resolution
Color

Resolution
frame rate Mean
±Variance (fps) Distortion Type

1 0 0 1000p 2048p 30 pristine
2 100/200 0 1000p 2048p 30 delay
3 300/400 0 1000p 2048p 30 delay
4 0 0 1000p 1600p/1280p 30 color resolution/scaling
5 0 0 1000p 1080p/720p 30 color resolution/scaling
6 0 0 1000p 640p/480p 30 color resolution/scaling
7 0 0 1000p 2048p 20 frame rate reduced
8 0 0 1000p 2048p 10 frame rate reduced
9 0 0 1000p 2048p random 15±10 frame rate reduced

10 100 0.025 480p 1600p 30 MLBC
11 200 0.025 480p 1920p 30 MLBC
12 300 0.025 480p 1600p 30 MLBC
13 100 0.05 360p 1280p 30 HLBC
14 100 0.05 360p 1080p 30 HLBC
15 100 0.05 360p 1080p 15 HLBC
16 400 0.05 360p 1280p 30 HLBC
17 400 0.05 360p 1080p 30 HLBC
18 400 0.05 360p 1080p 15 HLBC
19 100 0.075 120p 720p 15 SLBC
20 300 0.075 120p 720p 15 SLBC

D. Dataset and Metadata Description

The dataset includes the following components:

1) Human Avatar Videos: A set of 36 high-quality human
avatar videos purchased from Metastage, categorized by
gender, attire, skin color, movement, and duration. Al-
though we cannot make the proprietary Metastage videos
freely available, interested readers may also purchase
them.

2) Tool Instructions: Detailed instructions on using the
Unity Binary Tool for running the application, display-
ing video playlists, and visualizing artifacts.

3) Asset List: A comprehensive list of all the Metastage
assets used in the study, detailing the characteristics and
categorization of each video asset.

4) Metadata: Detailed metadata for each video, including
timestamps, frame information, user ratings, and artifact
configurations.

The metadata structure includes:

• Video Information: Details about each video, including
filename, duration, and content type.

• Experiment Logs: Logs of user interactions, ratings, and
head movements during the experiments.

• Configuration Files: JSON files used to configure and
control the video playback and artifact simulations.

By providing this detailed description, we aim to enhance the
transparency and reproducibility of our research.

IV. HUMAN STUDY DESIGN

This section provides a comprehensive description of the
subjective quality assessment study, including details about
the test environment, the interface of the assessment tool,
the experimental protocol, the evaluation methodology, the
post-study questionnaire, and analysis and processing of the
subjective scores.

A. Subjective Study Environment

The subjective quality assessment study was conducted in
two separate rooms at the Laboratory of Image and Video
Engineering at The University of Texas at Austin. The study
utilized two Oculus Quest Pro headsets having resolutions of
1800×1920 for each eye, using LCDs with a refresh rate of
72 Hz, and a field of view of 106 degrees horizontally and
96 degrees vertically. The participants used two controllers to
interact with the human avatars during the study. The choice
of the Oculus Quest Pro headset was based on its SOTA
capabilities, relative affordability, and compatibility with many
Metaverse applications, making it a suitable representative
device presenting immersive experiences to human subjects.

The VR headsets were interfaced with two desktop comput-
ers equipped with an AMD Ryzen Threadripper PRO 5975WX
32-core CPU@3.60GHz, 256GB RAM, and two GeForce RTX
3090 Ti Graphics Cards. This setup allowed for simultaneous
participation of two subjects. There was no distinguishable
difference between the two desktop computers and the two
Quest Pro headsets, ensuring a consistent experience between
the two setups.

We have included photos of the testing environment to
provide visual context for the subjective experiment setup.
Fig. 3a shows the initial state of the tool, where a start
button allows users to begin the study. Fig. 3b demonstrates
the setup, including the arrangement of VR headsets, seating,
and other equipment, with human avatar video playback on
a monitor/TV. Fig. 3c illustrates the rating process, where a
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(a) Initial State of Tool (b) Lab Settings and Human Avatar Video Play-
back

(c) Rating Bar

Fig. 3. (a) Initial state of the tool with a start button for users to begin the study. (b) Setup showing VR headsets, seating, and human avatar video playback
on a monitor/TV. (c) Continuous rating bar displayed after each video for users to provide a quality score, with the cursor initially at the leftmost end.

continuous rating bar is displayed after each video, allowing
users to score the entire video sequence.

B. Tool Design and Interface

Human avatar videos offer a suitable means to visualize
objects and scenes within immersive applications that involve
6DoF. To enable subjects to observe human human avatar
videos in a 6DoF environment, a privately released Unity tool
provided by the Meta platform was utilized. The Unity tool,
code will be made available, pending institutional approval,
offered two modes of operation. The first mode allows live
driving, enabling users to play human avatar videos while
adjusting parameter configurations that control the appearance
of artifacts. The second mode allows the playback of camera
coordinates from a live HMD driving session, then dumps
frames of ground truth and target. Users could monitor the
tool using either a PC or a VR headset.

In the PC view mode, users had the freedom to explore
a room and observe the human avatar from different viewing
angles. The HMD provided observers with a synchronized dis-
play that accurately matched their body and head movements,
creating a seamless and immersive perception of the virtual
environment. In the VR view mode, a reminder window with a
start button was provided to the users, allowing them to initiate
the study using the controllers. The human avatar videos were
then displayed, and after each video finished, a continuous
rating bar was displayed, with a movable cursor initially
positioned at the leftmost end. The quality bar was marked
with five evenly-spaced Likert indicators, ranging from “Bad”
to “Excellent.” The ratings were then sampled as floating point
numbers to one decimal place on [1, 5], with 1 indicating the
lowest quality and 5 denoting the highest quality. Subjects
adjusted the cursor position using the controller, then pressed
the “Next” button to proceed to the next video sequence. The
ratings were automatically recorded and saved in a CSV file.
The application continued to play the subsequent videos in
the playlist. Upon completion of all sequences, the subject
was informed that the study was over.

To reduce any background distractions, a simple synthetic
scene of a conference room was chosen and not varied across
all the videos, with the exception of Video Group 1 (Table
V), which had a different background as a control. This

TABLE V
DIVISIONS OF HUMAN SUBJECTS AND VIDEOS INTO MATCHED GROUPS,

ENSURING BALANCED AND UNBIASED VIEWING SESSIONS.

Group Participants Session 1 Session 2
I 13 subjects Subject Group A - Video Group 1 Subject Group A - Video Group 2
II 13 subjects Subject Group A - Video Group 2 Subject Group A - Video Group 1
III 13 subjects Subject Group B - Video Group 3 Subject Group B - Video Group 4
IV 13 subjects Subject Group B - Video Group 4 Subject Group B - Video Group 3
V 13 subjects Subject Group C - Video Group 5 Subject Group C - Video Group 6
VI 13 subjects Subject Group C - Video Group 6 Subject Group C - Video Group 5

created a focused environment that allowed the participants
to concentrate their efforts on providing accurate reports of
the visual quality of the rendered avatar objects.

C. Subjects and Training

A total of 78 subjects (48 male and 30 female) from The
University of Texas at Austin participated in the subjective
human study. Their ages ranged from 18 to 33 years, with a
majority falling between 20 and 25 years, as shown in Section
IV-D. The participants had only limited or no familiarity with
concepts of image and video processing. Some participants
used only one of the two desktop computers, while others
used both in two sessions. The computational power of the
two PCs was very similar. The subjects were divided into six
groups, and each participant completed two sessions as shown
in Table V. As mentioned earlier, and explained in Table III,
the videos were also divided into groups. Organizing the data
in this way allowed every video to be viewed and rated by 26
subjects, but divided into two groups who viewed two video
groups but in opposite order. Hence, Subject Groups I and II
both viewed and rated Video Groups 1 and 2, but in reverse-
ordered sessions. Similar protocol was applied for Subjects
Group III and IV, and V and VI.

Prior to the first session, the subjects signed a consent form
and received a general introduction to the study, informing
them that they would be watching two different sets of videos
in two separate sessions. The vision of each participant probed
and recorded using the Snellen visual acuity test and the
Ishihara color perception test, but no restrictions were placed
on participation based on any visual deficiencies.

The subjects were asked to maintain a fixed sitting position
at a distance of about 1.2 meters from the display. This
distance aligns with the default separation between subjects
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TABLE VI
PARTICIPANT FEEDBACK ON THE PROPORTION OF HUMAN AVATAR VIDEOS

THAT ELICITED FEELINGS OF DIZZINESS OR DISCOMFORT.

# of human avatar
videos inducing

uneasiness/dizziness
None <10 10-19 20-39 40-100 >100

Didn’t
remember

when
% of sessions 56% 6.7% 4% 8.1% 2.7% 4.7% 17.5%

and human avatars presented in HMDs. The prescribed dis-
tance aimed to afford participants adequate space to explore
the human avatars from different angles, while also ensuring
their comfort. The participants underwent a brief training
session to acquaint them with the rating system and to provide
instructions on how to assess and rate each video. The training
session included six sequences generated from two contents,
William Casual Talking and Tony, each presented at different
qualities (pristine, slight distortion, severe distortion). These
training sequences were not included in the test dataset.

During the testing sessions, a single-stimulus testing pro-
tocol was followed, as recommended by ITU-R BT 500.13
[52]. The ACR-HR methodology was employed to collect
subjective scores, meaning that only one human avatar video
was displayed during each rating. As mentioned in Section
III-B, the reference videos used in this study were purchased
from Metastage and reconstructed to closely resemble the orig-
inal source human avatar videos. Although the capture device
and reconstruction technology impose certain limitations, these
reference videos are considered pristine for the purpose of
our study. These were included in the human study, but the
subjects were unaware of which videos were references.

A randomized sequence of 120 human avatar videos, each
with a duration of 14 or 15 seconds, was presented in each
session. Consecutive videos from the same content were not
played back-to-back to minimize visual memory effects. The
participants were instructed to evaluate the perceived quality of
the videos without considering aspects of the content, whether
exciting, appealing, boring, or un/attractive. The randomized
ordering aimed to minimize biases related to content prefer-
ences or relative ordering. Each subject spent approximately 5
to 10 seconds manipulating the cursor and rating each video,
resulting in a total session time of 40 to 50 minutes. To avoid
fatigue and biases, the subjects were instructed to participate
in the second session more than 24 hours after the first.

D. Post Study Questionnaire

After completing each session, each participant was re-
quested to provide feedback on the study via a post-survey
questionnaire. This subsection offers an outline of the post-
survey questionnaire and presents relevant demographic infor-
mation pertaining to the participants.

To assess the adequacy of the durations of the displayed
videos that the subjects rated the quality of, a specific question
was included. Among the 156 sessions conducted (comprising
78 subjects, two sessions per subject), the subjects reported
that in 155 sessions (99.3%) that the 15-second duration
was sufficient to rate overall video quality. Another question
examined the perception of the overall distribution of the video
quality of the videos. In 128 sessions (81.8%), the participants

(a)

(b)

Fig. 4. Demographics of human study participants based on age (a) and
gender (b).

reported that the distribution was uniform, indicating an equal
representation of videos across quality levels. However, in
some sessions the participants generally perceived the majority
of the videos to be either of above average quality or of below
average quality.

To evaluate the difficulty experienced by the subjects when
rating the perceptual quality of the videos, another question
requested them to rate the difficulty (after each session) on
a scale of 0 to 5, with 0 indicating very difficult and 5
indicating reasonably easy to make quality judgments. Among
the 156 sessions, only one session was reported as generally
difficult to make subjective quality ratings, indicating that the
majority of participants were able to rate subjective quality
without encountering significant difficulty. This observation
is supported by the mean difficulty score of 3.48 and the
median difficulty score of 4, indicating only a moderate level
of difficulty.

Participants were also queried about any experiences of
dizziness or uneasiness during the viewing and rating of the
videos. Approximately 44% of sessions reported some degree
of dizziness or uneasiness, but this generally occurred only
on a small percentage of the videos, as shown in Table VI.
Generally, only a very small number of videos elicited these
feelings, and none caused any of the subjects to stop their
participation.
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TABLE VII
SUBJECT CONSISTENCY SCORES (SRCC AND PLCC) FOR SIX VIDEO

GROUPS, INDICATING HIGH LEVELS OF INTER-SUBJECT AND
INTRA-SUBJECT RELIABILITY.

Inter-Subject Consistency Intra-Subject Consistency
Video Group SRCC PLCC SRCC PLCC

1 0.9420 0.9748 0.8444 0.8833
2 0.9524 0.9798 0.8729 0.9084
3 0.9611 0.9763 0.8759 0.8809
4 0.9591 0.9780 0.8706 0.8855
5 0.9382 0.9711 0.8353 0.8774
6 0.9436 0.9736 0.8363 0.8726

TABLE VIII
SUBJECT CONSISTENCY (SRCC AND PLCC) BEFORE AND AFTER

CHANGING THE BACKGROUND, SHOWING MINIMAL IMPACT ON VIDEO
QUALITY PERCEPTION.

Inter-Subject Consistency
Video Group SRCC PLCC

1 (before: 12 ratings / after: 15 ratings) 0.9293 0.9746
2 (before: 13 ratings / after: 14 ratings) 0.9590 0.9804

At the conclusion of each session, demographic information,
including age and gender, was collected. The mean age of the
participants was 23.03, with a median age of 22 and a standard
deviation of 2.69. Visualizations depicting the age and gender
distributions are provided in Fig. 4.

E. Subject-Consistency Analysis

To study the internal consistency of the collected data, we
analyzed inter-subject and intra-subject correlations of the raw
data collected from the participants. As previously mentioned,
the 78 participants were evenly divided into six groups, as
outlined in Table III. To compute the inter-subject consistency
scores, each video group’s subject ratings of every video
were divided into two separate and non-overlapping subsets
of equal size. This procedure was repeated 100 times with
random splits. The median values of the Spearman’s rank-
ordered correlation coefficient (SRCC) and the Pearson linear
correlation coefficient (PLCC) between the Mean Opinion
Scores (MOS) of the two subsets were computed and are
presented in Table VII. Across all subject groups, the average
SRCC and PLCC values representing inter-subject consistency
were determined to be 0.9494 and 0.9756, respectively.

Intra-subject consistency measurements were also calculated
to assess the level of consistency exhibited by the individual
subjects when rating the videos. For each subject group, the
SRCC and PLCC were calculated between the individual
opinion scores and MOS. This procedure was repeated for
all 78 subjects across all subject groups. Table VII presents
the median SRCC and PLCC values for each subject group.
The overall average SRCC and PLCC across all subject groups
were determined to be 0.8559 and 0.8847, respectively. These
scores encourage a high level of confidence in the acquired
opinion scores.

To further investigate the reliability of the data, an inter-
subject consistency check was conducted on Video Groups 1
and 2 to determine whether changing the background influ-
enced the subjects’ ratings and to assess the consistency of
their responses. The SRCC and PLCC between the two sets
of ratings were computed between the two sets of ratings for

each video group. The results of this analysis are presented
in Table VIII. For Video Group 1, which had the different
background, the SRCC and PLCC values between the two sets
of ratings were found to be 0.9293 and 0.9746, respectively.
In the case of Video Group 2, characterized by a distinct
background, the ratings exhibited a strong positive correlation
before and after the background change, as indicated by the
high SRCC (0.9590) and PLCC (0.9804) values. The high
correlation scores between the two sets of ratings for both
video groups suggest that changing the background did not
significantly impact the subjects’ perception of video quality.

The analysis of subject consistency also revealed strong
agreement among the subjects, both within subjects and across
different backgrounds, lending credibility to the subjective
ratings collected in this study.

F. Processing of the Subjective Scores

We applied the SUREAL MLE-MOS method [53] to re-
cover reliable subjective quality scores on the human avatar
videos using the P.910 model [54]. This method utilizes a max-
imum likelihood estimate (MLE) approach to compute MOS,
offering advantages over prior subject rejection protocols [52],
[55]. MLE-MOS stands for Maximum Likelihood Estimate -
Mean Opinion Score, a statistical method used to derive the
most likely subjective quality scores from the data collected
in the study.

Subjective experiments are known to have various issues
around the reliability and accuracy of individual scores, neces-
sitating some level of statistical analysis to provide better mean
opinion scores. For example, in earlier versions of the P.910
standard [52], certain opinion scores are excluded as outliers
when they deviate significantly from the average. MLE-MOS
offers a better alternative, where each subject is characterized
by a bias and inconsistency term, roughly reflecting how much
this rater’s scores are lower/higher than the average, and how
much they spread around the global average. By correcting
each rater’s scores for the estimated bias and weighting them
inversely proportional to its variance, one obtains a maximum-
likelihood estimate of the mean opinion score that is both more
accurate and offers tighter confidence intervals. Additionally,
this method allows the estimation of bias and inconsistency
per rater, providing valuable insights into video contents and
test subjects.

The MLE-MOS iterative algorithm that estimates all
these parameters has been implemented in the open-source
SUREAL software package [53] and has been used in our
experiments.Our choice of the SUREAL model is motivated
by several factors: its decreased susceptibility to subject bias,
the provision of narrower confidence intervals, robust handling
of missing data, and the ability to offer detailed insights into
video contents and test subjects. These aspects are crucial for
maintaining the integrity and precision of subjective quality
assessments, ensuring that the analysis remains reliable even
with incomplete datasets.

We will refer to MOS processed in this way as MLE-
MOS. These include decreased susceptibility to subject bias,
narrower confidence intervals, robust handling of missing data,
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(a) Recovered quality scores using SUREAL.

(b) (c)

Fig. 5. The MLE formulation provides (a) estimated final opinion scores, along with (b) subject bias and inconsistency figures and (c) content ambiguity.
Each of these results includes the estimated parameters and their 95% confidence intervals. The content index shown in (c) corresponds to the descriptions
listed in Table III
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Fig. 6. Histograms of (a) MLE-MOS and (b) DMOS from the LIVE-
Meta Rendered Human Avatar VQA Database. The histogram is partly but
incompletely right-skewed, indicating that while most videos are of good
quality, very few are of excellent quality.

and the ability to provide insights into video contents and test
subjects.

In SUREAL, the raw video ratings are represented as
random variables Xe,s:

Xe,s = xe +Be,s +Ae,s, (1)

Be,s ∼ N (bs, v
2
s),

Ae,s ∼ N (0, a2c:c(e)=c).

for e = 1, 2, 3, ..., 720 and s = 1, 2, 3, ..., 78. Let xe denote
the perceived quality of video e as assessed by an impartial
and consistent hypothetical viewer. The bias (bs) and incon-
sistency (v2s ) associated with human subject s are represented
by i.i.d. Gaussian variables Be,s. Assume that the bias and
inconsistency of human subjects are consistent across all rated
videos. The ambiguity (a2c) associated with a specific video
content c is modeled by i.i.d. Gaussian variables Ae,s. In
this database, the unique source sequences are denoted as
c = 1, 2, ..., 36. Also assume that all distorted videos from
same video source exhibit a uniform level of ambiguity, and
that this ambiguity remains consistent across all users and
video content. To estimate the parameters θ = (xe, bs, vs, ac)
which represent the variables of the model, MLE is utilized,
and the log-likelihood function L is formulated as follows:

L = logP ({xe,s}|θ). (2)

Estimation of the optimal solution θ̂ = argmaxθ L is per-
formed using data collected from the psychometric study,
utilizing the Belief Propagation algorithm described in [53].

Figure 5 visually illustrates the estimated parameters. Figure
5a plots the recovered quality scores of the 720 videos in
the database created with the 20 different distortion parameter
settings listed in Table IV. Since every set of 36 videos
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corresponds to the same distortion type, we have added vertical
lines to distinguish the distortion types. As expected, the
mean predicted video quality scores noticeably decline as
the color resolution is decreased. The results highlight that
color resolution and frame rate had a more significant impact
on the perceived quality of human avatar videos than did
delay variations. This suggests that optimizing delay settings
could help achieve data efficiency in VR human avatar video
streaming without compromising perceptual quality.

As depicted in Fig. 5b, our analysis of subject bias and
inconsistency on human avatar videos reveals significant in-
dividual differences in perception and evaluation standards
among the subjects. From the parameter estimates, subject
#58 had the bias value bs = −0.64, the lowest among all
the subjects, indicating that their quality scores tended to be
lower than those of the other subjects. Conversely, subject
#39 had the highest bias value (bs = 0.55), suggesting that
their quality scores tended to be higher. The median bias
value obtained was -0.03, reflecting a moderate overall bias.
In terms of inconsistency, subject #55 exhibited the highest
value (vs = 0.89), indicating greater variability of their quality
scores, while subject #52 exhibited the lowest inconsistency
(vs = 0.29). The median inconsistency across subjects was
0.53. These insights underscore the importance of accounting
for individual differences amongst subjects. In Fig. 5b, the
subjects having the highest and lowest biases, and the subjects
having the highest and lowest inconsistencies are highlighted
by superimposed green and blue dots. Additionally, the red
dotted horizontal lines indicate the median values. By identi-
fying and adjusting for these biases and inconsistencies, it is
possible to enhance the robustness and accuracy of the quality
ratings. This refined understanding can inform the weighting
of subject ratings and/or the exclusion of outliers.

The level of ambiguity of the 36 source human avatar videos
is depicted in Fig. 5c. Among these videos, the human avatar
video from the 01-Natasha Serious Talking content exhibited
the highest ambiguity with a value of ac = 0.40, whereas the
human avatar video from the 32-Jenny Sitting Casual content
displayed the lowest ambiguity with a value of ac = 0.25.
This indicates that some contents were more challenging for
viewers to evaluate consistently, likely due to variations in
movement, expression, or other factors that affect perceptual
quality.

MLE-MOS has established itself as a dependable subjective
data processing protocol, especially in scenarios where refer-
ence pristine videos are absent, making it particularly valuable
in the advancement and assessment of NR VQA algorithms.
Conversely, Differential Mean Opinion Scores (DMOS) are
commonly employed in the development of FR VQA al-
gorithms, reducing the dependence of quality labels on the
content. Here, the original human avatar videos provided by
Metastage serve as proxy reference videos for the calculation
of DMOS. The DMOS of the ith video sequence is determined
as:

DMOS(i) = 5− (MOS(ref(i))−MOS(i)). (3)

In this context, MOS(i) denotes the ith video that has
undergone distortion, determined via the MLE formulation.

The proxy reference video is denoted as ref(i).

G. Data Analysis

Figure 6a displays the MLE-MOS histogram obtained using
SUREAL. The MLE-MOS values spanned the range [1.162,
4.391]. The distribution exhibits a slight right-skew, consistent
with patterns observed in other VQA databases. The majority
of the videos are of good quality, but few videos fall into
the category of excellent quality. The histogram in Figure
6b plots the distribution of DMOS calculated using Equation
3. The DMOS values spanned the range [1.968, 5.302]. The
distribution of the DMOS closely resembles that of the MLE-
MOS, albeit with a slight rightward shift.

1) Impact of Delays on MLE-MOS: To investigate the
impact of delays on MLE-MOS, we analyzed the MLE-MOS
of videos with different content IDs for various delay values.
Fig. 7a presents the MLE-MOS curves for videos with odd
content IDs, which were assigned distorted videos with delays
of 100 ms and 300 ms. Fig. 7b displays the MLE-MOS
curves for videos with even content IDs, which were assigned
distorted videos with delays of 200 ms and 400 ms.

The grouping of content IDs into odd and even categories
was done to systematically assess the impact of different delay
values on perceived video quality. By alternating the delay
values between odd and even content IDs, we aimed to ensure
a balanced and comprehensive evaluation across the dataset.

It can be observed that there are no significant separation
between curves for MLE-MOS across different delay values.
This suggests that the delay parameter has minimal influence
on the perceived quality of the videos.

2) MLE-MOS Content Dependence: In order to investigate
the relationship between the source video contents, single
distortions of color resolution, and their combined impact on
MLE-MOS, we analyzed the results presented in Fig. 7c and
Fig. 7d. Fig. 7c illustrates the MLE-MOS curves correspond-
ing to videos with odd content IDs, which were assigned
distorted videos with color resolutions of 1600p, 1080p, and
640p. Fig. 7d shows those with even content IDs, which were
assigned distorted videos with color resolutions of 1280p,
720p, and 480p. These figures depict distinct demarcations
between the MLE-MOS curves associated with different color
resolutions, highlighting the influence of color resolution on
perceptual quality assessment.

3) Rate Distortion Curves: The impact of varying frame
rates on MLE-MOS was examined by analyzing the MLE-
MOS curves shown in Fig. 7e. Notably, distinct separations
can be observed between curves of MLE-MOS of videos with
frame rates of 30 fps, 20 fps, and 10 fps. However, the curves
for videos with a frame rate of 15±10 fps exhibit inconsistent
placement. At times, these curves fell between the curves of
20 fps and 10fps, while in other instances, they surpassed the
20 fps curve or align closely with the 10fps curve. This finding
indicates that the introduction of variance in frame rate across
different content may hinder individuals’ ability to perceive
changes in perceptual quality, as the content may consist of
varying levels of static or dynamic movements. The observed
decrease in MLE-MOS values at a lower frame rate (10 fps)
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Fig. 7. (a)-(e) Variation of MLE-MOS against content for varying delays, color resolutions, and frame rates, (f) Variation of MLE-MOS with distortion index
across contents with odd IDs and even IDs
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TABLE IX
MEDIAN SRCC, KRCC, PLCC AND RMSE OF THE COMPARED FR VIDEO QUALITY MODELS AGAINST HUMAN JUDGMENTS OF QUALITY OF THE

VIDEOS IN THE LIVE-META RENDERED HUMAN AVATAR VQA DATABASE OVER 1000-TRAIN-TEST SPLITS. THE UNDERLINED AND BOLDFACED ITEMS
REPRESENT THE BEST AND TOP THREE PERFORMERS, RESPECTIVELY. THE CONTRIQUE (FR), RE-IQA (FR), CONVIQT (FT), AND HOLOQA MODELS

ACHIEVED STANDOUT PERFORMANCE.

Metrics Pre-Training / Fine-tuning Dataset
Body-only Face-only

SRCC(↑) KRCC(↑) PLCC(↑) RMSE(↓) SRCC(↑) KRCC(↑) PLCC(↑) RMSE(↓)

PSNR-RGB N/A (handcrafted) 0.7219 0.5223 0.7562 0.5750 0.7129 0.5111 0.7405 0.5924
PSNR-Y N/A (handcrafted) 0.7167 0.5192 0.7505 0.5798 0.6983 0.4987 0.7285 0.6026

SSIM, 2004 [56] N/A (handcrafted) 0.7694 0.5618 0.7755 0.5537 0.8001 0.5929 0.8264 0.4917
DLM, 2011 [57] N/A (handcrafted) 0.8599 0.6601 0.8919 0.3995 0.8716 0.6762 0.9106 0.3624

VIF, 2005 [58], [59] N/A (handcrafted) 0.7184 0.5200 0.7499 0.5819 0.8154 0.6085 0.8513 0.4621
LPIPS (AlexNet), 2018 [60] ImageNet pretrained AlexNet -0.8616 -0.6573 0.8815 0.4131 -0.8790 -0.6835 0.9069 0.3703

LPIPS (VGG), 2018 [60] ImageNet pretrained VGG-16 -0.8441 -0.6356 0.8535 0.4558 -0.8764 -0.6803 0.9047 0.3734
CONTRIQUE (FR), 2022 [61] ImageNet pretrained ResNet-50 / KADIS-700k + AVA + COCO + CERTH-Blur + VOC 0.9024 0.7205 0.9470 0.2816 0.8991 0.7138 0.9403 0.2976

Re-IQA (FR), 2023 [62] ImageNet pretrained ResNet-50 & ImageNet pretrained MoCo-v2 / KADIS-140K + AVA + COCO + CERTH-Blur + VOC 0.9068 0.7298 0.9401 0.2919 0.8988 0.7154 0.9308 0.3218

VMAF (v0.6.1), 2016 [63] N/A (handcrafted) 0.8179 0.6085 0.8367 0.4789 0.8695 0.6716 0.8949 0.3905
FovVideoVDP (v1.2.0), 2021 [64] N/A (handcrafted) 0.7763 0.5750 0.8103 0.5168 0.8810 0.6888 0.9155 0.3527

ST-GREED, 2021 [65] N/A (handcrafted) 0.8543 0.6619 0.8800 0.4162 0.8946 0.7154 0.9148 0.3552
FUNQUE, 2022 [66] N/A (handcrafted) 0.8655 0.6684 0.9049 0.3740 0.8980 0.7140 0.9404 0.2982

Y-FUNQUE+, 2023 [67] N/A (handcrafted) 0.8663 0.6641 0.8914 0.3971 0.8956 0.7120 0.9355 0.3094
3C-FUNQUE+, 2023 [67] N/A (handcrafted) 0.8599 0.6547 0.8832 0.4104 0.8981 0.7129 0.9357 0.3101

CONVIQT (FR), 2023 [68] ImageNet pretrained ResNet-50 + Kinetics-400 + Waterloo1k + dareful + REDS + MCML + UVG 0.9065 0.7289 0.9526 0.2673 0.8834 0.6903 0.9273 0.3283
HoloQA, 2024 [16] ImageNet pretrained MoCo-v3 + SHHQ + VGGFace2-HQ 0.9144 0.7443 0.9489 0.2671 0.9201 0.7506 0.9523 0.2650

HoloQA with Frame Tracking, 2024 [16] ImageNet pretrained MoCo-v3 + SHHQ + VGGFace2-HQ 0.9163 0.7497 0.9531 0.2573 0.9291 0.7709 0.9593 0.2497

highlights the significant influence of temporal distortions on
the perceived quality of human avatar videos.

4) Distortion Type Analysis: Figure 7f provides an analysis
of the influence of distortion type on the MLE-MOS across
different content IDs. It may be observed that the curves for
contents with odd and even IDs exhibit consistency, except for
a distinct difference observed in the curves corresponding to
distortion indices 4, 5, and 6, which represent color resolution
distortions. As discussed in Section III-B of the Main paper,
video content with odd IDs was assigned color resolution
distortions of 1600p, 1080p, and 640p, while video content
with even IDs was assigned resolutions of 1280p, 720p, and
480p, respectively. Thus, the curves depicted in Figure 7f
effectively reflect this assignment strategy and its impact on
the MLE-MOS.

These analyses highlight several key findings regarding the
impact of different factors on the visual perception of video
quality, particularly in the context of human avatar videos.
Among these factors, color resolution and varying frame
rate had a stronger impact on video quality perception of
human avatar videos compared to different delay values. These
findings suggest that adjusting delay can lead to data efficien-
cies in VR human avatar video streaming without significant
perceptual loss. For VR content creators, understanding which
distortions have the least impact on perceived quality can help
optimize encoding and streaming workflows. For instance,
reducing frame rates moderately may save bandwidth without
greatly affecting user experience, while maintaining high color
resolution could avoid noticeable degradation in quality. Mon-
itoring these kinds of balances can lead to more efficient use
of resources while maintaining an acceptable level of quality.

V. EVALUATION FRAMEWORK

To show the usefulness of the new subjective database, we
conducted a comparative study of existing VQA models on
it. Next we detail the processes of data set preparation, the
model evaluation protocol, and the performance outcomes of
the compared FR and NR IQA/VQA models.

A. Evaluation Dataset Processing

Fig. 8. Exemplar of a dumped frame from the human avatar video Natasha
Serious Talking having original dimension of 1832 × 1920 pixels. Within
this frame, the yellow bounding box captures the avatar’s body (320×1088),
while the green box surrounds the avatar’s face (94× 133).

As mentioned in Section IV-B, the Unity tool enabled us to
extract frames of both the ground truth and target videos based
on user log files. Considering that users may view human
avatar videos from various angles, previous research [36] has
shown that increasing the number of projected views has
little correlation to improved quality predictions. Therefore,
we adopted a fixed viewing angle when capturing the log files
used to generate each frame of the human avatar videos. An
example of a dumped frame is depicted in Fig. 8.

Since the background region occupies a large proportion
of the displayed content, and may impact the performance
of IQA/VQA algorithms, we adopted the method presented in
[36], which excludes the background pixels. Likewise, we used
the simple expedient of applying the YOLO-v7 model [77] to
extract of bounding boxes around each human avatar. Prior
research has demonstrated the significance of frontal views
of human bodies and faces as attractors of visual attention
[37]. To further investigate the impact of facial features and
expressions on video quality, we applied the YOLO-v8 face
model [78] to extract tight bounding boxes around each human
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TABLE X
MEDIAN SRCC, KRCC, PLCC AND RMSE OF THE COMPARED NR VIDEO QUALITY MODELS AGAINST HUMAN JUDGMENTS OF QUALITY OF THE

VIDEOS IN THE LIVE-META RENDERED HUMAN AVATAR VQA DATABASE OVER 100-TRAIN-TEST SPLITS. THE UNDERLINED AND BOLDFACED ITEMS
REPRESENT THE BEST AND TOP THREE PERFORMERS, RESPECTIVELY. THE DEEP LEARNING BASED MODELS CONTRIQUE, CONVIQT, AND GAMIVAL

ACHIEVED STANDOUT PERFORMANCE.

Metrics Pre-Training / Fine-Tuning Dataset
Body-only Face-only

SRCC(↑) KRCC(↑) PLCC(↑) RMSE(↓) SRCC(↑) KRCC(↑) PLCC(↑) RMSE(↓)

BRISQUE, 2012 [69] N/A (handcrafted) 0.8461 0.6440 0.8934 0.3973 0.8673 0.6792 0.9135 0.3641
CONTRIQUE, 2022 [61] ImageNet pretrained ResNet-50 + KADIS-700k + AVA + COCO + CERTH-Blur + VOC 0.9092 0.7426 0.9593 0.2511 0.8953 0.7102 0.9370 0.3125

TLVQM, 2019 [70] N/A (handcrafted) 0.5104 0.3527 0.5966 0.7109 0.6587 0.4719 0.7452 0.5997
VIDEVAL, 2021 [71] N/A (handcrafted) 0.8497 0.6567 0.8979 0.3914 0.8817 0.6966 0.9220 0.3404

ChipQA, 2021 [72] N/A (handcrafted) 0.8404 0.6431 0.8853 0.4193 0.8813 0.6967 0.9164 0.3527
FAVER, 2022 [73] N/A (handcrafted) 0.8194 0.6277 0.8794 0.4233 0.9106 0.7391 0.9410 0.3027
VSFA, 2019 [74] ImageNet 0.8670 0.6720 0.9135 0.4079 0.8328 0.6401 0.8904 0.4339

RAPIQUE, 2021 [75] handcraft + ImageNet 0.8469 0.6472 0.8985 0.3933 0.9108 0.7425 0.9505 0.2754
CONVIQT, 2023 [68] ImageNet pretrained ResNet-50 / Kinetics-400 + Waterloo1k + dareful + REDS + MCML + UVG 0.8930 0.7120 0.9532 0.2705 0.8834 0.6943 0.9287 0.3285
GAMIVAL, 2023 [76] handcraft + ImageNet + GVSET + KUGVD + GISET 0.8842 0.6973 0.9251 0.3404 0.9203 0.7539 0.9515 0.2719

Re-IQA (quality only), 2023 [62] ImageNet pretrained ResNet-50 & ImageNet pretrained MoCo-v2 / KADIS-140K + AVA + COCO + CERTH-Blur + VOC 0.8563 0.6609 0.9093 0.3724 0.8381 0.6392 0.8821 0.4161
Re-IQA (content only), 2023 [62] ImageNet pretrained ResNet-50 & ImageNet pretrained MoCo-v2 / KADIS-140K + AVA + COCO + CERTH-Blur + VOC 0.8476 0.6536 0.9070 0.3755 0.8518 0.6586 0.9128 0.3611

Re-IQA (content + quality), 2023 [62] ImageNet pretrained ResNet-50 & ImageNet pretrained MoCo-v2 / KADIS-140K + AVA + COCO + CERTH-Blur + VOC 0.8715 0.6806 0.9271 0.3327 0.8562 0.6620 0.9105 0.3618

avatar’s face, within the previously cropped body bounding
boxes, as exemplified in Figure 8.

B. Model Evaluation protocol

To demonstrate the usefulness of the new LIVE-Meta Ren-
dered Human Avatar VQA Database, we used it to evaluate a
variety of leading IQA/VQA algorithms using various standard
metrics, including the SRCC, Kendall Rank Correlation Coef-
ficient (KRCC), PLCC, and Root Mean Square Error (RMSE).
The SRCC and KRCC measure the degree of monotonicity
between the objective model predictions and the human sub-
jective scores, while the PLCC and RMSE gauge the accuracy
of the predictions. As usual, a logistic non-linearity function
was applied to the predicted quality scores prior to computing
the correlations [79].

For each split, 80% of the videos were randomly selected
from all the contents to form the training and validation sets,
while the remaining 20% were used as the test set. To maintain
fairness of assessment and prevent any model from learning
content, we ensured that the subsets did not share any original
content.

C. Performance of FR IQA/VQA Models

In this section, we examine the performance of SOTA FR
VQA models on the new LIVE-Meta Rendered Human Avatar
VQA Database. As mentioned in Sec. II-B1, most existing
quality assessment models designed for meshes are FR models,
and can be further classified into two types: model-based
methods and IQA algorithms that operate on individual frames.
The latter are well-suited when only 2D mesh rendering
snapshots are to be quality-analyzed. Since there exist few
developed FR VQA models designed for 2D mesh projections,
we included FR VQA models originally designed to analyze
natural videos and for generic VQA tasks.

We comprehensively compared the performance of 17 FR
VQA algorithms: PSNR-RGB, PSNR-Y, SSIM [56], DLM
[57], VIF [58], [59], LPIPS (AlexNet) [60], LPIPS (VGG),
CONTRIQUE [61], Re-IQA [62], VMAF [63], FovVideoVDP
[64], ST-GREED [65], FUNQUE [66], Y-FUNQUE+ [67], 3C-
FUNQUE+ [67], CONVIQT [68], and HoloQA [16] on the
new LIVE-Meta database. We calculated the DMOS using

Equation 3 when computing the performance of the FR VQA
models.

Since they do not utilize multiple frames to make VQA
predictions at a given moment, PSNR, SSIM, DLM, VIF,
LPIPS, CONTRIQUE (FR), and Re-IQA (FR) were calcu-
lated on a per-frame basis between the reference videos
and corresponding distorted counterparts. These frame-level
measurements were subsequently averaged across all frames
to obtain aggregate global scores. Among the FR VQA
models, PSNR-RGB, PSNR-Y, SSIM, DLM, and VIF are
not ordinarily trained and were thus applied directly on all
1000 test sets. We used the pre-trained open-source version
of VMAF (v0.6.1) originally designed for general-purpose
VQA tasks. Likewise, we report the results obtained with the
publicly available calibrated FovVideoVDP model. When im-
plementing LPIPS, CONTRIQUE (FR), Re-IQA (FR), VMAF,
ST-GREED, FUNQUE, Y-FUNQUE+, 3C-FUNQUE+, CON-
VIQT (FR), and HoloQA, features were extracted and an
SVR was trained using 80%/20% train/test sets. CONTRIQUE
(FR), ReIQA (FR), and CONVIQT (FR) are full-reference im-
plementations of established unsupervised NR models, while
HoloQA is a new hybrid model that combines both traditional
and deep learning-based features for comprehensive quality as-
sessment. The optimal parameters of the SVR were determined
using a five-fold cross-validation procedure on the training and
validation sets.

D. Performance of NR IQA/VQA Models

Table IX provides an overview of the median performance
of the above FR IQA/VQA algorithms on the LIVE-Meta Ren-
dered Human Avatar VQA Database. The standout performers
were CONTRIQUE (FR), ReIQA (FR), and CONVIQT (FR),
which generalize well since they are unsupervised, and the two
versions of HoloQA, which were designed to analyze human
avatar content.

We also conducted a comprehensive evaluation to gauge the
performances of existing NR IQA/VQA algorithms on the new
LIVE-Meta database. A selection of prominent generic NR
IQA/VQA models, namely BRISQUE [69], CONTRIQUE,
TLVQM [70], VIDEVAL [71], ChipQA [72], FAVER [73],
VSFA [74], RAPIQUE [75], CONVIQT, GAMIVAL [76],
and Re-IQA (quality only, content only, content + quality)
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[62], were tested. BRISQUE, TLVQM, VIDEVAL, ChipQA,
and FAVER are primary based on quality-aware neurostatistic
distortion models, while RAPIQUE and GAMIVAL fuse neu-
rostatistical features with deep learning-based features. CON-
TRIQUE derives from a self-supervised learning framework
that aims to learn quality-aware representations without the
need to train on human opinion scores. The VSFA model
leverages deep learning to extract features, which are subse-
quently mapped to MLE-MOS. CONVIQT combines spatial
CONTRIQUE features with temporal quality features, also
without supervision. Re-IQA employs a multi-modal approach
that integrates quality and content-aware features derived
from pre-trained deep learning models to enhance prediction
accuracy.

The extraction of quality-aware features in frame-based
models like BRISQUE and CONTRIQUE was performed on
a per-frame basis, which were then pooled over frames to
obtain quality predictions. The supervised methods, includ-
ing BRISQUE, CONTRIQUE, TLVQM, VIDEVAL, ChipQA,
FAVER, RAPIQUE, CONVIQT, GAMIVAL, and Re-IQA all
employed an SVR to map the pooled and combined quality-
aware features to MLE-MOS. GAMIVAL, which was designed
for conducting VQA on gaming videos, modifies RAPIQUE
by employing deep pre-trained gaming content model called
NDNet-Gaming [80]. We followed the same evaluation proto-
col using 80%/20% train/test splits.

Table X summarizes the median performances of the com-
pared NR IQA/VQA algorithms on the new VQA database.
TLVQM, which relies on multiple hand-tuned hyperparameters
optimized for predicting generic video quality, was unable to
generalize to human avatar videos.

However, algorithms leveraging neurostatistical video dis-
tortion features, including BRISQUE, VIDEVAL, ChipQA,
FAVER, RAPIQUE, and GAMIVAL, all performed well.
While VIDEVAL slightly outperformed RAPIQUE on the
body-only evaluation, RAPIQUE demonstrated superior per-
formance on the face-only evaluation. The resizing of frames
in the body-only evaluation could lead to performance degra-
dations in RAPIQUE, which also uses aggressive frame sub-
sampling. Incorporating deep learning techniques in mod-
els such as CONTRIQUE, VSFA, RAPIQUE, CONVIQT,
GAMIVAL, and Re-IQA yielded substantial performance im-
provements. This underscores the ability of learning-based
approaches to capture the inherent statistical structure of syn-
thetically generated human avatar videos and their distortions.

VI. CONCLUSION AND DISCUSSION

We have presented the LIVE-Meta Rendered Human Avatar
VQA database, which is a new resource for the development
and evaluation of FR and NR VQA algorithms that are
specifically designed for VR textured mesh content. Although
we cannot make the proprietary Metastage videos freely
available, other users may also purchase them. To facilitate
such efforts, we also makes the metadata of the database
publicly available at https://live.ece.utexas.edu/research/LIVE-
Meta-rendered-human-avatar/index.html.

Our study utilized Oculus Quest Pro headsets, which may
limit the generalizability of our findings to other VR envi-

ronments. Future research would benefit by exploring and
comparing diverse VR environments and headsets to obtain
a broader understanding of the device factors affecting VR
video quality.

We showed the usefulness of the new database for analyz-
ing, benchmarking, and designing for FR and NR IQA/VQA
algorithms. Future investigations may concentrate on the de-
velopment of deep learning methodologies to enhance the
performance of FR and NR IQA/VQA algorithms for avatar
analysis.

While our dataset includes color resolution, depth resolu-
tion, delay artifacts, and frame rate distortions, other distortion
types can be generated using our tool, such as color errors,
edge noise, hole frequency, and surface noise. Future studies
that include these additional distortion types would be useful.
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“NDNetGaming-development of a no-reference deep CNN for gaming
video quality prediction,” Multimedia Tools and Applications, pp. 1–23,
2020.

https://doi.org/10.1145/3592786
https://doi.org/10.1109%2Ftip.2021.3106801
https://github.com/ultralytics/ultralytics

	Introduction
	Related Works
	Subjective 3D Graphics Quality Assessment
	Objective 3D Graphics Quality Assessment
	Objective Point Cloud Quality Assessment Models
	Objective Mesh Quality Assessment Models


	LIVE-Meta Rendered Human Avatar VQA Database
	Source Sequences
	Video Distortions
	Volumetric Simulation-Rendering Pipeline
	Dataset and Metadata Description

	Human Study Design
	Subjective Study Environment
	Tool Design and Interface
	Subjects and Training
	Post Study Questionnaire
	Subject-Consistency Analysis
	Processing of the Subjective Scores
	Data Analysis
	Impact of Delays on MLE-MOS
	MLE-MOS Content Dependence
	Rate Distortion Curves
	Distortion Type Analysis


	Evaluation framework
	Evaluation Dataset Processing
	Model Evaluation protocol
	Performance of FR IQA/VQA Models
	Performance of NR IQA/VQA Models

	Conclusion and Discussion
	References

