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Figure 1: A model to predict perceptual impact (in Just-Objectionable-Di!erences, or JODs) is derived from HDR preference
data for combinations of display contrast and peak luminance, with predictions visualized as a heatmap (left). In this plot,
the baseline 0 JOD condition is set to values similar to commercially-available VR displays: 100 nits peak luminance and
64:1 contrast. In addition, we simulate three displays with di!erent dynamic ranges. Our model allows us to examine the
perceived improvement coming from increased peak luminance and contrast. For example, both display 2 and 3 provide a 1
JOD improvement over display 1. Note that HDR content cannot be displayed in a PDF format, so all images in this manuscript
are tone-mapped for presentation. See supplementary webpage for representative content. Image credits HdM-Stuttgart.

Abstract
The contrast and luminance capabilities of a display are central to
the quality of the image. High dynamic range (HDR) displays have
high luminance and contrast, but it can be di!cult to ascertain
whether a given set of characteristics quali"es for this label. This
is especially unclear for new display modes, such as virtual reality
(VR). This paper studies the perceptual impact of peak luminance
and contrast of a display, including characteristics and use cases
representative of VR. To achieve this goal, we "rst developed a
haploscope testbed prototype display capable of achieving 1,000
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nits peak luminance and 1,000,000:1 contrast with high precision.
We then collected a novel HDR video dataset targetting VR-relevant
content types. We also implemented custom tone mapping opera-
tors to map between display parameter sets. Finally, we collected
subjective preference data spanning 3 orders of magnitude in each
dimension. Our data was used to "t a model, which was validated
using a subjective study on an HDR VR prototype headmounted
display (HMD). Our model helps provide guidance for future display
design, and helps standardize the understanding of HDR1.
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1 Introduction
The dynamic range of a display is de"ned by the contrast between
the brightest and darkest tones, from peak pixel activation to trough.
High dynamic range (HDR) is a widely and commercially used term
that describes displays supporting brighter whites and darker blacks.
As such, HDR is commonly de"ned by contrast and peak luminance,
although color gamut, bit depth, gamma, and other characteristics
are also often discussed in this context.

Much of the work de"ning today’s HDR standards was done with
cinematic applications in mind. However, as display technologies
grow more and more complex, the applicability of these results
may be jeopardized. This is true for new display architectures, like
zonal or pixel-level dimming, but even more critical for emerging
displaymodes, such as VR. VR displays have limited dynamic ranges
when compared to traditional displays: battery limitations and the
presence of optical elements preclude them from producing high
brightness and reduce contrast. Furthermore, content viewed on VR
displays is often of a di#erent type than what is shown in movies,
and may bene"t from peak luminance and contrast di#erently.

Existing de"nitions for HDR classi"cation often rely on empirical
industry standards. Previous research e#orts have probed user
preferences for HDR, but there is nevertheless little quantitative
data to model perceived quality. In this work, we establish the "rst
uni"ed preference scale for dynamic range. In particular, we focus
on the weighed tradeo#s between the two core factors determining
HDR: peak luminance and contrast.

To this aim, we "rst developed a haploscopic testbed that allows
for signi"cantly more dynamic range than what would typically
be possible in commercially available VR displays. Leveraging our
testbed, we conducted a large-scale psychophysical study using
HDR video stimuli representative of typical use cases in VR. Con-
tent was mapped between dynamic ranges using one of two tone
mapping schemes. The study results are used to create a model
that maps display contrast and peak luminance to user preference
scores, scaled in Just-Objectionable-Di#erence (JOD) units. Finally,
an evaluation study conducted on an HDR VR prototype shows our
model’s ability to generalize to a headmounted VR scenario. Our
research sets the targets for future VR HDR display designs and
applications, helping guide hardware and software for perceptually
e!cient HDR displays. In summary, our contributions are:

• a reliable experimental setup, including an HDR testbed and
psychophysical processes required to obtain accurate mea-
sures of HDR preference;

• a dataset of HDR content encompassing VR use cases, span-
ning di#erent peak luminance and contrast values via custom
tone mapping operators, rated with user preference scores in
absolute JOD units;

• a computational model "t to this data that predicts perceptual
quality given the display’s peak luminance and contrast;

• a series of practical applications such as optimizing HDR
display design and power consumption.

2 Related Work
Industry standards de"ne HDR (Section 2.1), but do not necessarily
align with the human visual system’s abilities (Section 2.2), or with
subjective preferences in HDR (Section 2.3).

2.1 What is HDR, today?
HDR is a popular label for displays, including commercially avail-
able televisions, phones and monitors. Although many possible
de"nitions for what makes a display HDR exist, such as the capac-
ity to play content in HDR "le formats, we are interested speci"cally
in a display’s ability to reproduce contrast and luminance.

Consumer-facing review websites sometimes provide uninfor-
mative product evaluations – for instance, RTINGS.com2 de"nes
the contrast of any OLED display as in"nite3. The Video Electronics
Standards Association’s (VESA) DisplayHDR4 standard de"nes a
tier list of parameters including peak luminance, black level, con-
trast, etc. required for certi"cation by this group. However, no
perceptual rationale for how tiers are set is given. Ward [2008]
proposed that VESA’s de"nition of dynamic range is insu!cient, as
it ignores factors like ambient light, quantization, etc., and criticized
contrast ratio as a means to perceptually describe HDR.

This is further complicated when discussing new technologies
for which no standards exist. An example are VR displays which
contain optical elements that may introduce blur or reduce contrast
[Mantiuk et al. 2024] in a content-dependent manner.

2.2 Luminance Perception
The human visual system (HVS) is able to distinguish light over 14
orders of magnitude [Ferwerda 2001; Spillmann and Werner 2012].
Several works studied thresholdHVS responses to simple luminance
and contrast stimuli. Kunkel and Reinhard [2010] studied the ratio
between the brightest and darkest features detectable by the HVS in
a given adaptative state, "nding it to be at least 3.7 log nits. Radonji$
et al. [2011] studied a mapping between luminance and lightness
for checkerboard patterns under varying ambients, "nding the HVS
capable of scaling lightness over 3+ log units of luminance. Vangorp
et al. [2015] conducted studies to model the e#ect of adaptative
state on local luminance detection. Contrast constancy [Kulikowski
1976] and the Ferry-Porter law [Ferry 1892; Porter 1902] have been
shown to break down across large luminance ranges [Ashraf et al.
2022; Chapiro et al. 2023]. Rather than focusing on the absolute
limits of threshold vision, our paper focuses on preferences for HDR
content depiction at practically relevant luminances and contrasts.

2.3 User Preference in HDR Displays
Several works studied dynamic range requirements of HDR displays
in terms of user preference. Mantiuk et al. [2010] studied the black

2RTINGS.com
3Sony A95L OLED TV Review
4displayhdr.org

https://doi.org/10.1145/3721238.3730629
https://doi.org/10.1145/3721238.3730629
www.rtings.com
https://www.rtings.com/tv/reviews/sony/a95l-oled
https://displayhdr.org/
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Figure 2: Haploscope display system. To study varying contrast and peak luminance parameters, we need a display system that
can reproduce a wide dynamic range. (a) We built a hardware testbed, which includes two HDR displays, one for each eye. Light
from the displays re"ects o! of mirrors (>98% re"ectance) toward the user, whose head is stabilized by a chinrest. (b) Top-down
schematic showing the optical paths. The virtual image is presented at 1.82 diopters.

level required to match “absolute black”, "nding 0.0044 nits su!-
cient for a dark surround and up to 1 nit for a very bright surround.
Wanat et al. [2012] followed up, "nding the highest perceivable
contrast for their setup between 1,300:1 and 2,400:1.

Many studies focused on HDR for traditional displays. Akyüz
et al. [2007] found HDR presentation superior to SDR, with bright-
ness taking precedence over dynamic range. Using a prototype HDR
display Seetzen et al. [2004, 2006] found higher peak luminances
improve quality regardless of contrast, up to a point. Rempel et al.
[2009] showed that under bright ambient light, users prefer higher
peak luminances, but choose the lowest black level regardless of
ambient. The Dolby study [Daly et al. 2013] had a heavy focus on
cinema, going as far as simulating exit sign lighting in the study
setting. The authors found that a black level of 0.1 nits and peak
luminance of 650 nits satis"ed the average user; a separate study on
highlights required a peak luminance of up to 18,000 nits. Related
variables, such as color gamut size [Park and Murdoch 2020] and
display distance [Hammou et al. 2024] were also explored.

Viewing conditions in VR di#er from traditional display, a#ect-
ing user preferences. Depth judgements in stereo VR are modulated
by contrast and luminance changes [Wolski et al. 2022], and dis-
play "eld of view has a signi"cant e#ect on perceived brightness
[Chapiro et al. 2018]. Matsuda et al. [2022a] demonstrated an HDR
VR prototype capable of luminances over 20,000 nits. A subjec-
tive study was presented using scans of real-world environments,
showing user luminance preferences exceed the capabilities of com-
mercially available devices, particularly for outdoor scenes.

Despite these results, no uni"ed perceptual scale de"ning pref-
erences across peak luminance and contrast in HDR displays exists.
We set out to build such a scale, shown in Figure 1 (left), by mea-
suring subjective preference in VR using relevant content.

3 Experimental Methods
The goal of our study is to determine the perceptual impact of
contrast and peak luminance in VR displays. Section 3.1 describes
the experimental hardware, capable of reproducing a wide lumi-
nance and contrast range. Section 3.2 details how displays with a
compressed dynamic range were simulated using tone mapping.
Section 3.3 presents our experimental dataset of HDR videos. Finally,
Section 3.4 describes the study itself.

3.1 Hardware Testbed
Contrast in modern VR headsets is limited due to the presence of
optical components in the visual path. Notably, even custom HDR
VR displays have simultaneous contrast lower than 100:1 [Matsuda
et al. 2022b]. This di#ers from traditional displays, where a budget
television may have contrast over 5000:1, while high-end models
often go over 380,000:1 (see Supplement I for examples).

To overcome this challenge, we built a custom stereoscopic haplo-
scope testbed (see Fig. 2a) using two 4K resolution, 60 Hz frame rate,
10 bit, 31.1" EIZO ColorEdge PROMINENCE CG31465 professional
HDR reference monitors, with a contrast ratio of 1,000,000:1 and
peak luminance of 1,000 nits. Light from each display is re%ected by
a mirror (Edmund Optics protected silver) with re%ectance greater
than 98%, enabling peak luminance of 980 nits. The system’s "eld
of view is 65.7↑, in line with VR prototypes [Matsuda et al. 2022b].
A schematic is shown in Figure 2b, and details related to calibration,
optical arrangement, and more can be found in Supplement D.

3.2 Display Simulation
To study di#erent display dynamic ranges, we must be able to
present content as it would be seen on a display with target re-
duced contrast and peak luminance. This is accomplished via tone

5EIZO CG3146 speci"cations: eizo.com/products/coloredge/cg3146

https://www.eizo.com/products/coloredge/cg3146/
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Figure 3: Steps of our display simulation algorithm. A frame is fed to a display model, which outputs the luminance values
emitted by the display device. The tone of the output linear image is extracted, and its highlight is compressed via Chen et al.
[2023]. To maintain color ratios, Schlick [1995] color correction is applied. Finally, the black level of the display is raised to
produce the output frame. Here, the target display has peak luminance 250 nits & 64:1 contrast. Image credits SJTU.

mapping operators (TMOs) - algorithms that serve to convert con-
tent to a di#erent (typically smaller) dynamic range, while aiming
to preserve the original scene’s look [Tumblin and Rushmeier 1993].
Because this is a compression operation, the result is typically lossy
in terms of visible quality. Many TMOs have been proposed in
the literature [Eilertsen et al. 2017], and evaluating their merits is
outside the scope of this work.

While TMO choice will have an e#ect on preference for display
characteristics, our goal is not to determine an optimal tone map-
ping scheme. We selected a curve formulation given by Chen et al.
[2023], which is similar to the International Telecommunication
Union (ITU) standard recommendation for HDR TV [Series 2019].
The shape of the curve is illustrated in Figure 3 (Highlight Compres-
sion), and reduces the contrast of highlights via a smooth rollo#
spline, which begins at a luminance 𝐿init, with smoothness 𝑀 .

To demonstrate that tone mapping algorithm implementation
may have a non-trivial impact on visual quality we employed two
implementations using a modi"ed version of this curve. The "rst
employs a simple content-independent instance. Throughout this
paper, we refer to this TMO as F!"#$ TMO. Secondly, we make this
TMO content-adaptive (C%&’#&’(A)*+# TMO) by using the VR
TMO optimization framework of Tariq et al. [2023].

3.2.1 F!"#$ TMO. Our process of implementing the tone mapper
consisted of these steps in order of application (shown in Figure 3):

1. A display model converts a display-encoded frame F to lin-
ear values, I = E(F ), where E(·) is the perceptual quantizer
(PQ) electro-optical transfer function (EOTF) [Miller et al.
2013]. Similar to SDR gamma (e.g. sRGB), PQ is a transfer
function for HDR content that maps luminance up to 10k nits.

2. Tone extraction by computing per-channel maximum of the
linear RGB image I,

T = max
(
I𝐿 , max

(
I𝑀, I𝑁

) )
, (1)

where I𝐿 ,I𝑀,I𝑁 are the red, green, and blue channels of the
input image, respectively. An image’s tone T is a proxy for
relative luminance, which is commonly the component used
in tone mapping [Reinhard et al. 2002]. Operating on tone
rather than luminance avoids out-of-gamut colors after color
correction (see Supplement Section A.1).

3. Highlight compression applying the tone curve [Chen et al.
2023] on T . Two constants, a starting luminance 𝐿init and a
smoothness parameter 𝑀 , de"ne the shape of the curve. Tone
values less than 𝐿init are unmodi"ed. High values of 𝑀 are
closer to a log-linear curve, and low values nearer to clipping.

4. Color correction using the Schlick [1995] formula,

I↓ =
T ↓

T I . (2)

Tone mapping can alter color appearance, and we apply this
correction to preserve color ratios. Figure 3 (bottom, 2nd
image) shows the result without this correction, where the
color of the scene di#ers signi"cantly from the input.

5. Black level addition, simulating low contrast displays as
described by Mantiuk et al. [2024] and Chapiro et al. [2024],
is done by raising the minimum luminance 𝐿min, of the hypo-
thetical display through an ambient term:

Imapped =
(
𝐿max ↔ 𝐿min

𝐿max

)
I↓ + 𝐿min . (3)

We implemented this TMO with structure similar to Algorithm 1.
In Section 5.1, we demonstrate a real-time shader implementation.

3.2.2 C%&’#&’(A)*+# TMO. Tariq et al. [2023] built an optimiza-
tion framework targetted for HDR VR, which aims to compute the
TMO parameters that minimize contrast distortion. We employed
this framework, modifying Step 3 of the F!"#$ TMO, to optimize
the curve’s starting luminance 𝐿init. A heuristic computation was
used for the smoothness parameter 𝑀 (see Supplement Section A.2).
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Figure 4: A comparison of tone curves. We compare the two tone curves used in our perceptual study, the F!"#$ TMO and the
C%&’#&’(A)*+# TMO, through visual example (top). Zoomed insets are displayed to the right of each image. Here, content is
mapped to 250 nits peak luminance and 8,000:1 contrast (0.031 nit black level). The shape of each tone curve is visualized in the
plot at bottom left, where the 𝑁-axis presents the luminance of the source frame and the 𝑂-axis shows the luminance of the
mapped result. See the zoomed inset; the starting luminance of highlight compression is optimized in the C%&’#&’(A)*+#
TMO. A luminance scanline (measured at the red line on a zoom-in of the werewolf’s hand) is shown on the bottom right.

Following Tariq et al. [2023], we apply a leaky integrator to the
optimized key value to improve temporal stability.

A comparison of the two TMOs is shown in Figure 4. In the
qualitative example, the insets show a case in which the heuristic
starting value selected for the F!"#$ TMO clips details which are
visible in the C%&’#&’(A)*+# TMO. The C%&’#&’(A)*+# TMO
starts highlight compression at a lower luminance than the F!"#$
TMO (Figure 4, bottom left), but contrasts are preserved as shown
in the scanline plot. For pseudocode, see Supplement Section A.4.

3.3 Constructing an HDR-VR Video Dataset
Most prior preference studies in HDR (Sec. 2.3) focused largely
on cinema and home theater applications — targeting “cinematic”
content, or used HDRI probes captured in real-world environments
for VR [Matsuda et al. 2022a]. Our work focuses on VR HDR, and as
such we aim to use content that is representative of typical VR use
cases. Our stimuli focus on four categories spanning major VR use
cases. Namely, this includes productivity (scrolling the web, mes-
saging), faces (augmented calling), entertainment (gaming, cinema),
and user-generated content (UGC)/passthrough. 3 representative
HDR videos were selected for each category, each of which was
manually mastered using Nuke6 on our haploscope to span the
dynamic range of our reference display (1,000 nits, 1M:1 contrast).
6Nuke software product site: foundry.com/products/nuke-family/nuke

Naïve sampling of videos, e.g. if overrepresented by those with
high average luminance, could skew user preferences. As such, we
attempted to sample videos which span a wide distribution of lumi-
nances, as shown in Figure 5, with some bright videos (e.g. Porsche,
Werewolf) and others with very high contrast (e.g. Showgirl, Smith).
UGC/Passthrough videos were from the SJTU HDR video sequence
dataset [Song et al. 2016] and the Smith, Showgirl scenes were col-
lected from the HdM-HDR-2014 sequences [Froehlich et al. 2014].
The rest of our content is original – Face videos were captured using
a RED Komodo digital camera7, Productivity content created in
Unity, and the Werewolf scene modeled in Blender. All videos were
encodedwith HDR10metadata (4K, 60fps, 10-bit, BT. 2100 primaries,
PQ EOTF). Additional details are described in Supplement E.

The 12 scenes are tone-mapped to 5 di#erent peak luminance
values and 5 di#erent contrast ratios using the two TMOs described
in Section 3.2. In total, this amounts to 12 scenes ↗ (5 peak lumi-
nances ↗ 5 contrasts ↗ 2 TMOs + 1 reference) = 612 videos. The
contrast and luminance parameters are spaced logarithmically due
to the nonlinear perception of light by the human visual system:

• Peak luminance [nits]: 63, 125, 250, 500, 1,000
• Contrast: 64:1, 320:1, 1,600:1, 8,000:1, 40,000:1.

7RED Komodo product site: red.com/komodo

https://www.foundry.com/products/nuke-family/nuke
https://www.red.com/komodo
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Figure 5: HDR video stimuli. We presented users 12 HDR
videos in total, grouped into 4 content types. Representative
frames are displayed. Luminance distributions (𝑁-axis in log
nits) aggregated over all frames are visualized as violin plots,
grouped by category. Note that in the Productivity and Faces
scenes, the black background is discounted in the luminance
plots. Image credits HdM-Stuttgart, SJTU, Blender.

The reference is pegged at 1,000,000:1 contrast and 1,000 nits peak
luminance (our haploscope’s limit, and the original master of the
content). Example stimuli are displayed in Supplement Section A.3.

3.4 User Study
Finally, our large-scale user studywas conducted using tone-mapped
(Section 3.2) HDR video stimuli (Section 3.3) displayed on our hap-
loscope testbed (Section 3.1).

Participants. We recruited 41 paid participants (ages 24-61), all of
which had normal or corrected-to-normal vision. Color de"ciency
was assessed using the Ishihara test, but users who failed parts of
the test (3 users in total) were not excluded as their data was not
signi"cantly di#erent from the other participants (see Section 4).
An Institutional Review Board (IRB) approved the study, and all
participants signed consent forms before beginning the experiment.

Experimental Procedure. Our experimental design consisted of a
two-interval forced choice (2IFC) task using the method of paired

comparisons, as forced-choice protocols were found to lead to less
noisy data compared to rating-based studies (e.g. Likert scale) [Man-
tiuk et al. 2012] by presenting a simpler task to users.

Each trial in our experiment began by showing the user the ref-
erence condition. Participants used a three-key keyboard to switch
between this and two tone-mapped test videos, and were not able to
proceed to the next trial until all three videos were viewed at least
once. A selection was made by pressing on a foot pedal. A 500ms
gray screen at the mean luminance of the incoming stimulus was
included when switching to prevent direct comparisons between
conditions. This also helped ensure appropriate luminance adapta-
tion for each incoming stimulus, as it is longer than the required
bright-to-bright saturation time [Hayhoe et al. 1987].

Participants were seated for the duration of the study, and per-
ceived stimuli through our haploscope testbed. The lights in the
room were turned o# for the duration of the study to mitigate
glare, and to simulate an environment representative of enclosed
VR HMDs. A chinrest was used to stabilize users’ heads and align
their eyes with the viewing mirrors. Participants were instructed
to select the video which is closer to the reference, in terms of both
contrast and brightness. A 15-second timer was included, but time
constraints were not enforced. Before the start of each study, a
4-trial training session is conducted to familiarize users with the
study setup and stimuli. Each scene used in the study session was
shown to users during the training.

Stimuli Sampling. In total, our study consists of 612 unique stim-
uli (see Section 3.3 for the calculation). We allowed comparisons
between all parameters except across scenes. A naïve full study de-
sign would amount to

(612
2
)
=186, 966 pairwise comparisons, which

is prohibitively large. Instead, we used the active sampling ASAP
framework [Mikhailiuk et al. 2021] to determine the optimal con-
ditions to probe in each trial. Given all previous responses, ASAP
determines comparisons providing the maximum expected informa-
tion gain. To further reduce participant workload, we split the study
into 4 sessions, with each user rating 3 out of 12 scenes, resulting in
612/4 = 153 trials (one for each condition). On average, participants
spent 30.8 minutes to complete the active portion of the study. The
experiment logic and HDR video presentation were implemented
using PsychToolbox 3 [Kleiner et al. 2007].

4 Results
The data from our psychophysical study was converted to a uni-
"ed perceptual Just-Objectionable-Di#erence (JOD) scale using
Bayesian maximum likelihood estimation assuming observers be-
have according to Thurstone’s Case V model [Thurstone 2017].
We used the pwcmp8 algorithm [Perez-Ortiz and Mantiuk 2017]
to perform this statistical scaling procedure, and to "lter outlier
observers with an inter-quartile-normalised score above 1.5 (2 were
removed). We point readers to the work of Perez-Ortiz and Mantiuk
[2017] for an in-depth de"nition of the JOD unit. JODs can also be
converted to percentage preference (see Supplementary Figure 14).
If display A has a score 1 JOD greater than B, this means display A
would be selected 75% of the time over display B; if A has score 2
JODs greater than B, it would be selected 91% of the time and so on.

8pwcmp library: github.com/mantiuk/pwcmp

https://github.com/mantiuk/pwcmp
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Figure 6: User study results. Our data contains 3 axes – contrast, peak luminance (nits), and perceptual impact (JODs). We
display these results as a projection onto the contrast (#rst row) and peak luminance (second row) axes. Each individual plot
here represents iso-contrast/peak luminance data. For example, in the top left #gure, the 𝑁-axis is contrast and the 𝑂-axis
is perceptual impact for constant 63 nit peak luminance. Error bars represent 95% con#dence intervals. The red star is the
reference condition, which itself has an error bar because it was a condition in the user study. Orange triangles are the results
for the C%&’#&’(A)*+# TMO, and blue circles represent the F!"#$ TMO. Each plot’s 𝑁-axis is on a log scale. Solid lines are
model evaluations for each TMO.
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A preview of the study results (ag-
gregated across scenes), parameter-
ized by contrast, peak luminance (nits),
and perceptual impact (JODs) for the
two tone mappers we studied (F!"#$
TMO: ↘, C%&’#&’(A)*+# TMO: ≃),
is shown in the inset. A detailed projec-
tion of the 3D data along the two studied axes is shown in Figure 6.
Error bars represent the range of scaled JOD scores which lie within
a 95% con"dence interval, computed by simulating 1,000 bootstrap
samples using pwcmp. The reference (red star, 1,000 nits, 1M:1 con-
trast) is pegged to 0 JODs; note that the JOD scale is relative, and
score di#erences represent the perceived distance between two
conditions. Tabulated JOD values are shown in Supplement B.

Qualitatively, we note that for increases in both contrast and
peak luminance, JOD scores increase but seem to plateau for high
values (>1,000:1 contrast and 500 nit peak luminance). However, for
high peak luminances and very low contrast, scores decrease; this
is likely because of the very high black level (>15 nits for a 1,000
nit, 64:1 contrast display) in these conditions. The same trend was
observed in earlier work by Seetzen et al. [2006]. An N-way analysis
of variance (ANOVA) was conducted on the aggregate results to
determine the main e#ects of all study variables on JOD scores. The
analysis found signi"cant main e#ects on JOD scores for contrast
(𝑃 ⇐ 0.01), peak luminance (𝑃 ⇐ 0.01), and tone mapping (𝑃 =
0.0046). Additionally, a signi"cant interaction e#ect was observed
between peak luminance and tone mapping (𝑃 = 0.0034), but not

between contrast and tone mapping (𝑃 = 0.1372). This is likely
explained by the fact that our TMO compresses the highlight only,
so di#erences in tone mapping technique are more apparent for
displays with lower peak luminance, while black level is treated the
same for both methods. A per-video analysis found the main e#ect
of video category was not signi"cant (𝑃 = 0.99), but signi"cant
interaction e#ects between video category and contrast (𝑃 ⇐ 0.01),
peak luminance (𝑃 ⇐ 0.01), and TMO (𝑃 = 0.0039) were found.

5 Model
We "t an analytical model to the data collected from our perceptual
study to predict JOD scores given black level and peak luminance.
Black level is modeled after "ndings that sensitivity follows the
square root of luminance at low light levels [de Vries 1943; Rose
1948] while peak luminance is modeled as a logarithmic function
following Weber’s law,

𝑄 (𝐿min) = 𝑅1 ↔ 𝑅2
√
𝐿min (4)

𝑆(𝐿max) = log10 (𝐿max)𝑂3 (5)
M(𝐿min, 𝐿max) = 𝑄 (𝐿min) · 𝑆(𝐿max) ↔ 𝑅4, (6)

where M : R2 → R, 𝐿min is black level, and 𝐿max is peak lumi-
nance of the display. The "tted parameters of our model 𝑅1,...,4 are
displayed in Supplement C. Note that both Equation (4) and Equa-
tion (5) behave monotonically with respect to decreases in 𝐿min and
increased 𝐿max, but the multiplication of the two in Equation (6)
can result in lower JOD scores for a combination of high 𝐿min and
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Figure 7: Computational model. An analytical model is #t to
our user study data (F!"#$ TMO: ↘, C%&’#&’(A)*+# TMO:
≃), and rendered as a 3D surface for both TMOs we studied.
Slices of the surface, one at constant 320:1 contrast and the
other at 125 nits, are plotted at the intersection of grey planes
and shown to right. Scatter points are scaled user study data.

high 𝐿max (low contrast, high peak luminance), which is a trend
we hoped to capture given the same observation in our study data.

Our model "t has a root mean square error (RMSE) of 0.23 and
0.16 (measured vs. predicted JOD scores) for the F!"#$ TMO and
C%&’#&’(A)*+# TMO, respectively. A render of the 3D surface "t
is shown in Figure 7, and slices along each axis are to the right. In
Fig. 6 and Supplement Section C.1, we plot slices for all conditions.

5.1 Subjective Model Evaluation
A study with 12 additional participants (ages 22-45, 7 male) was
conducted to validate that our model generalizes to a headmounted
VR scenario. This study employed di#erent scenes, tested di#erent
display parameters, and followed a new experiment protocol from
the main study to ensure thorough validation of the model.

As commercially available VR headsets have signi"cant limita-
tions in terms of contrast and peak luminance, we opted to use
a custom HDR VR HMD prototype. Our headset is similar to the
one described by Matsuda et al. [2022b]. An achromatic doublet is
placed in the viewing path, so the dynamic range of the content is
distorted based on its characteristics. Because no standard protocol
exists for VR metrology that would accurately capture this e#ect,
we employed a custom process. Simultaneous contrast is found
by measuring the luminance of a checkerboard test pattern with
varying spatial frequencies, using a CS-2000 spectroradiometer.
Contrast was de"ned by the luminance measurement of a white di-
vided by a black checker, and found to be between 45:1 and 340,000:1
depending on spatial frequency of the measured pattern. The peak
luminance of the display was 1,000 nits for all measurements.

To get a representative value of simultaneous contrast for stimuli
used in our study, we performed a through-the-lens measurement
of the luminance of 3↑ white and black square patches placed in a
bright region of each scene (see Figure 8, right). Contrast measure-
ments were made for scenes tone-mapped to 60, 250, and 750 nits
peak luminance using the F!"#$ TMO. Exact measurement data are
displayed in Section G.3. The contrast variable plugged into our
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Figure 8: Validation study results and measurement. User
study results (left) are displayed, with study rating (MOS)
on the 𝑁-axis, and model predictions (JOD) on the 𝑂-axis.
Scatter colors represent peak luminance, and larger markers
correspond to higher scene contrast. Horizontal error bars
represent standard deviation of scores (SOS). The contrast of
each scene displayed in HDR VR was found by measuring
the luminance of a 3↑ square (right). Image credit Greg Zaal.

model for this validation correspond to these ground-truth mea-
surements for the 3 peak luminances, rather than via simulation of
black level as done in the main study.

Six 360↑ HDRI probes (Supplement Section G.2) were used in
our study. In total, we have (6 scenes) ↗ (3 peak luminances) = 18
conditions. We conducted 4 repeats for each trial, following the
recommendations of Perez-Ortiz and Mantiuk [2017], for a total
of 72 trials per user. To make tone-mapped stimuli viewable in
real-time with head tracking, we stored the F!"#$ TMO as a lookup
table implemented as a Unity shader (see Supplement Section G.4).

We followed the ITU P.910 standard for rating-based studies
[Installations and Line 1999]. A user is "rst presented with the
reference HDRI (1,000 nits peak luminance), and is able to switch
between it and a tone-mapped scene. Participants were allowed
to view scenes as they wish, with natural head movements. After
viewing both images, the user is then asked to rate the test image
with respect to the reference on a "ve-point scale.

Ratings averaged across repeats were converted to mean opinion
scores (MOS) using the Net%ix Sureal library [Li and Bampis 2017;
Li et al. 2020]. Figure 8 shows the resulting MOS scores plotted
against the JOD scores predicted by our model. Linear (Pearson
𝑇 = 0.813, 𝑃 ⇐ .01) and rank-order (Spearman 𝑈 = 0.820, 𝑃 ⇐ .01)
correlations between study ratings andmodel predictions are strong
[Moore and Kirkland 2007], indicating that our model can predict
the results of the headmounted VR setting validation study well.
Further discussion can be found in Supplement G.

6 Applications
In this section, we describe some practical applications of our model.

6.1 Predicting Display Quality
Given a display’s peak luminance and contrast, our model can pre-
dict its subjective quality score (in JOD units). This is demonstrated
in Figure 9, where a JOD score is predicted for all parameter combi-
nations. Iso-JOD contours are plotted at 0.5 JOD steps, or around a

https://github.com/Netflix/sureal
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Figure 9: Display quality predicted by our model. Our computational model (#t to the C%&’#&’(A)*+# TMO data) is evaluated
for all combinations of peak luminance and contrast to create a plot of iso-JOD contours. The conditions sampled in our user
study are plotted as black crosses. Here, the baseline (0 JODs, red X) is set to parameters plausible for commercial VR display
(100 nits, 64:1 contrast). Iso-JOD contours are plotted at 0.5 JOD steps, and for 5 tiers in the VESA DisplayHDR standard (circle
points). An optimal path (dashed line) along the model’s gradient is plotted, starting from the baseline. Several additional
display technologies are plotted as asterisks, and the reference monitor used in our study as a red star.

Figure 10: Iso-JOD contours. A curve evaluated at constant
JOD value (here 2.04 JODs) is plotted as a blue line. The inter-
sections of this contour line at 100% and 75% power consump-
tion, assuming a reference display with VESA DisplayHDR
400 parameters (400 nits, 1,300:1), are plotted as dashed lines.

63.2% preference. Note that the baseline is set to plausible param-
eters for a commercial VR display (100 nits, 64:1) [Mehrfard et al.
2019]. Similarly, we can predict the expected perceptual quality
of each tier in the VESA DisplayHDR standard. A set of commer-
cially available non-VR displays are plotted for reference (asterisks),
including theater projectors, TVs, laptops displays, and monitors,

enabling perceptual comparisons between di#erent display tech-
nologies and standards (see Supplement H for details).

6.2 Design Tradeo!s
Commercial display design involves evaluating tradeo#s in perfor-
mance, production cost, power consumption, etc. For example, if
designing a VR headset with the goal of improving the commercial
VR baseline in our plot by 2 JOD units (approx. VESA DisplayHDR
400); combinations of contrast and peak luminance which satisfy
this improvement are plotted as a blue curve in Figure 9, with a
zoom-in plotted in Figure 10. As an example, a display with 400
nits peak and 1,300:1 contrast would provide this improvement, but
so would one with 300 nits peak and 5,580:1 contrast. If prioritizing
battery life, the option with lower peak luminance may be prefer-
able. However, the latter choice may be more appealing if optical
elements that allow for high contrast are expensive to manufacture.

For standalone VR headsets, power consumption is especially
important: up to 40% of an XR device’s power is consumed by the
display component [Anand et al. 2011]. We paired our display qual-
ity model with the LCD display power usage prediction de"ned by
Chen et al. [2024]. In Figure 10, we show that reducing the peak
luminance of a reference display (yellow marker) will consume
proportionately less power, but to compensate for the loss of vi-
sual quality and maintain a constant JOD score, contrast must be
increased, with black level reduced from 0.3 nits to 0.05 nits.
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7 Limitations & Future Work
ISO-JOD curves for traditional displays were evaluated using our
model, given contrast and luminance. In addition, while our study
simulated VR with HDR monitors in a haploscope setting, the e#ect
of viewing conditions, optics, etc. would have to be assessed. This
work could serve as a framework for future study targeting tradi-
tional displays, which could con"rm our model’s generalizability.

Our display simulation uniform black level increase which is
realistic for LCD displays, but only approximates the e#ects of VR
optics on the content. In our validation study, we showed our model
works for VR HDR with optics, but contrast had to be measured
per scene, which is impractical for large-scale application. Future
improvements to VR metrology and optical modeling would allow
our model to be applied to arbitrary VR optics scenarios. In addition,
exploring the perceptual trade-o#s of di#erent backlight or optical
architectures would be an interesting follow-up to this work.

Our study employed a practical tone mapping pipeline, follow-
ing modern recommendations. A very di#erent TMO may lead to
altered results, in which case it may be useful to repeat this study.

8 Conclusion
We conducted a large-scale psychophysical study on subjective
preferences in VR, measuring the impact of peak luminance and
contrast, the two main variables de"ning HDR display. Our study
quanti"ed the preference for higher peak luminance and contrast,
and suggested that preference saturates at high values. These results
were captured via a computational model, which was validated with
a second subjective study. Finally, we discussed how this model can
be used to evaluate display standards, guide display design, and
quantify trade-o#s between quality and display power.
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