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Fig. 1. A visual representation of the facial saliency maps produced in our work. On the le� side, we show the subjective saliency of face regions for each of
the studied distortion types, including geometry (simplification, smoothing, and noise) and texture (compression and blur). Note the nontrivial variations -
such as the nose and mouth region being most important for simplification, yet, the eyes are most important for blur. On the right side, the face’s aggregate
general-use saliency map is shown across all distortions.

Humans are uniquely sensitive to faces. Recognizing �ne detail in faces
plays an important role in social cognition, identity; and it is key to human
interaction. In this work, we present the �rst quantitative study of the relative
importance of face regions to human observers. We created a dataset of 960
unique models featuring localized geometry and texture distortions relevant
to visual computing applications. We then conducted an extensive subjective
study examining the perceptual saliency of facial regions through the lens
of distortion visibility. Our study comprises over 18,000 comparisons and
indicates non-trivial preferences across distortion types and facial areas. Our
results provide relevant insights for algorithm design, and we demonstrate
our data’s value in model compression applications.
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1 INTRODUCTION
The human face holds immense importance in various domains,
ranging from psychology and neuroscience to computer vision and
graphics. Faces serve as a primary medium for social communi-
cation, conveying a wealth of information through expressions,
gestures, and other facial cues. However, there has been an absence
of quantitative studies that speci�cally examine which areas of a
face are most important for di�erent tasks and perceptual processes.

In perception literature, visual saliency (or salience) is the percep-
tual quality that makes some items in the world stand out from their
neighbors and grab our attention. As this concept became integrated
into computational frameworks, methods that may be inspired by
biological principles, but geared empirically towards applications in
computer vision and graphics have become popular [Perazzi et al.
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2012]. Within this framework, we de�ne a facial saliency map as one
that indicates which parts of the face are perceptually important
to an observer in a visual computing context. Intuitively we may
expect some regions of the face to be especially prominent in this
way. In applied scenarios this intuition is recognized in practice by
artists and animators, who have historically given special attention
to features like the eyes or mouth for critical tasks like facial blend
shape based expression generation or sampling. While there is am-
ple literature on both face perception and saliency, no quantitative
data on visual sensitivity to face regions in this context is available.
We set out to build a subjective map of the face. In particular,

our goal is to generate a numerical descriptor that can be used in
computer graphics applications related to face rendering, learning,
and geometry processing. As such, we focus on mapping human sen-
sitivity by how noticeable distortions are when present on di�erent
areas of a face. We gathered a large-scale (# = 72) psychophysical
dataset for localized facial distortions, consisting of over 18, 000 sub-
jective evaluations in a carefully planned experimental procedure.
Notably, as face-rendering technology is constantly evolving, our
study is designed in a way as to make it independent of any one spe-
ci�c rendering technique, instead choosing to focus on commonly
occurring artifacts. As our study parameters were unusually broad,
spanning 3 base models, 5 di�erent artifacts types at 2 magnitudes,
and 32 local regions (for a total of 960 unique combinations), modern
active sampling techniques were used to ensure optimal coverage
and maximize information gain with each trial.
Finally, we demonstrated and subjectively validated use cases

leveraging our facial saliency maps to face-related applications in
compression for both geometry and texture, and Gaussian Splatting-
based rendering [Kerbl et al. 2023]. Understanding localized impor-
tance maps of the face opens the way for future work studying
expression, identity, and other perceptual priors for visual com-
puting. Our face saliency maps, distortion dataset, and subjective
experiment data are made available to the community1.

2 RELATED WORK
2.1 Saliency
The concept of saliency was originally introduced in the cognitive
neuroscience community and transferred over to a computational
framework by Itti et al. [1998]. In this context, saliency algorithms
attempt to model the mechanisms of visual attention in humans.
This task is important, because knowing which area of a scene is
likely to be attended by viewers can enable applications that opti-
mally allocate rendering or scanning resources, and is particularly
important in cases where limited means are available, like image and
video compression, or on mobile devices with limited computation.

In image and video processing, saliency has become a major topic
of research, with thousands of published works available. For more
information, we refer the reader to the survey by Borji et al. [2019].
Typically, computational techniques are bottom-up and rely on low-
level image features like edges and texture. While some methods
use face-detection as a high-level importance-boosting signal [Cerf
et al. 2007], they are not concerned with the relative importance of

1Source code and data at https://github.com/facebookresearch/FaceMap

regions on the face, but rather treat the entire region containing it
(as obtained by a bounding box, or similar techniques) uniformly.

Lee et al. [2005] extended the notion of image saliency to 3D
geometry, using a multi-scale geometric curvature computation.
Subsequent research extends the method to compute saliency, with
spectral global geometry analysis [Song et al. 2014] or viewing
region information [Leifman et al. 2016]. Applications include visu-
alization, mesh simpli�cation [Gal and Cohen-Or 2006; Shilane and
Funkhouser 2007], and mesh watermarking [Lavoué et al. 2006]. It
is important to point out that while these descriptors of shape can
be relevant for computational geometry applications, they do not
necessarily result in perceived importance. For example, in terms of
curvature eyes are relatively �at, while ears are intricate, but our
intuition points to eyes often being more salient than ears. Song
et al. [2021] leveraged image saliency models to produce 3D mesh
saliency. This method evaluates un-textured 3D meshes, which are
not suitable for studies of the face.
Finally, an important subset of saliency exploration deals with

attention as de�ned by explicit tracking of the users’ gaze. Kim and
colleagues [2010] validated the relationship between mesh saliency
and human eye �xation and found a positive correlation. Lavoue et
al. [2018] studies further to create a mesh �xation benchmarking
dataset. Wang and colleagues [2018; 2016] used 3D printing and
correlate gaze on the physical object to the digital 3D models. While
gaze-based solutions can provide important information about a
scene, it is often di�cult to disambiguate the data from the exper-
imental task, which usually consists of free-viewing experiences.
In contrast, we chose an active detection task, i.e. participants are
instructed to seek out visible distortions on faces, which allows for
a better degree of con�dence in the applicability of the results to
improve the performance of visual computing applications.

2.2 Face Datasets and Perceptual�ality
Many 3D datasets of faces are present in the literature. Datasets
focused on facial expressions range from ones using low-cost hard-
ware like the Kinect [Cao et al. 2013] to high quality captures using
the Di3D dynamic face capture system [Zhang et al. 2013]. Large
datasets focusing on individual di�erences exist, such as Zhu et
al. [2021] (938 participants) and Yin et at. [2006] (100 subjects). As
our work focuses on regions of the face, it naturally results in a very
large number of variables, which grows further when analysing mul-
tiple artifacts. To avoid an unfeasible study size, we chose to focus
on a small number of base models collected using a high-resolution
3dMD scanner, as described in Section 3.
A number of datasets on perceptual quality are available in the

literature, for both imaging and geometry. Imaging datasets are often
used to calibrate perceptual quality metrics, as discussed by Mantiuk
et al. [2021]. Similarly, in the geometry domain perceptual metrics
like DAME [Váša and Rus 2012] and MSDM [Lavoué 2011; Lavoué
et al. 2006] are calibrated on quality datasets. Nehmé et al. [2023]
ran a large-scale study of distorted textured meshes, used to train a
di�erence metric. Zerman et al. [2020] performed a subjective study
where mesh-based and point-cloud based methods are compared
for volumetric video of full body performances. However, none of
these datasets or metrics deals speci�cally with faces.
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Wolski et al. [2022] collected a dataset quantifying the visibility of
geometric distortions on faces. As they focus exclusively on geome-
try, non-textured meshes were employed to avoid reducing artifact
visibility due to masking. As our work is focused on both texture and
geometry distortions, we are interested in studying the visibility of
artifacts in realistic face models, and thus use fully textured meshes.
In addition, our study focuses on localized distortions in order to de-
rive a map of relative importance of face regions, while Geo-metric
applies distortions evenly on the entire head model, making this
kind of analysis impossible. McDonnell et al. [2021] examine the
visibility of expressions on static textured faces by rating di�erent
activation levels of blendshapes via a Likert scale experiment. This
work is similar to ours in that stimuli have local characteristics on
the face (depending on the expression), but di�ers in that it does
not examine the visibility of distortions stemming from artifacts.
The researchers also explored race and sex di�erences, but found
no strong evidence of an e�ect. We selected a diverse range of sub-
jects in terms of gender and race for our studies, but leave deeper
exploration of these factors to future work.

2.3 Subjective Studies
To explore the relative importance of regions of the face, we selected
a side-by-side study design (termed 2-alternative-forced-choice, or
2AFC). This method was selected instead of direct ratings (such as
a Likert scale or mean-opinion-scoring) as pairwise comparisons
simplify the task in each trial to a binary choice, and have been
shown to produce more accurate results [Zerman et al. 2018].
The output of the 2AFC study can be converted from pairwise

comparison data into perceptually meaningful just-objectionable-
di�erence units (JODs, a concept closely related to just-noticeable
di�erences, or JNDs) using the method of Perez-Ortiz et al. [2017].
Scaling our results in JOD units presents several bene�ts, such as
being able to extend our study in the future without relying on
a user’s internal Likert scale, which is strongly dependent on the
dataset being used. In addition, JOD scores can be directly converted
to probability preference in a 2AFC comparison (see supplementary
Fig. 13, and the work of Mantiuk et al. [2021] for detailed analysis).

3 LOCAL FACIAL DISTORTION DATASET
We need a suitable dataset to study the relative importance of facial
regions in terms of artifact visibility. We describe the process of
creating our local distortion dataset in this section.

3.1 Base meshes
We use facial scans of human subjects as bases for our dataset.
3dMD Ltd’s static 12-viewpoint 3dMDhead scanning system, a com-
mercially available 3D scanner, was used to obtain the data. This
high-end scanner2 is composed of 36 machine vision cameras in 12
viewpoints, which is optimized for detailed captures of the head.
Continuous 3D textured surface meshes are generated at varying
levels of detail (approximately 45k vertices in our case). Three vol-
unteering and informed subjects’ scans were used in this study.

2Linear accuracy range below 200 micrometers on a frame-by-frame basis claimed by
the manufacturer, see https://3dmd.com/products/

3.2 Distortion Locations
To study di�erent regions on the face, we need a way to localize dis-
tortions. To do this, we de�ned points-of-interest in an empirically-
guided fashion. These points were chosen based on an approxi-
mately even distribution across the face while also ensuring labels
were placed on semantically signi�cant regions like the eyes, mouth,
nose, and other facial features. Six landmarks were selected along
the center line of the face, and 13 more were placed symmetrically
on each of the left and right sides. Because face outlines can be sig-
ni�cantly a�ected by geometric distortions, points were also placed
along the jawline. An illustration of all the landmark locations and
semantic labels can be seen in Figure 9. A validation of these land-
marks against randomized points is given in Supplementary B.

To avoid an excessive experiment size, we did not place samples in
regions like the hair, neck, interior of the mouth, or back of the ears
or head, restricting our study to regions of the face only. To further
reduce the study duration, we randomly presented landmarks not
on the center line on either the right or left side, which was not
expected to a�ect results due to the symmetric nature of the face
and the non-sided nature of the experiment design. This assumption
was con�rmed in data analysis during piloting, and the sidedness
of the landmarks was shown to not be a signi�cant factor during
statistical analysis of our study data (see Section 4.7).

3.3 Distortion Types
In order to study the visibility of distortions in localized face regions,
we must select a set of distortion modalities to apply to our base
meshes. Our dataset consists of both geometry and texture distor-
tions. To help make our data more widely applicable, we focus on
general distortion types commonly found in visual computing ap-
plications, as speci�c implementations may change over time. Each
artifact was presented in two di�erent magnitudes, with artifact
strength de�ned during pilot experiments to subtend approximately
1 JOD per level in the aggregate, which was deemed optimal to avoid
low-value conditions where artifacts are either obvious or invisible.

3.3.1 Texture distortions. Texture distortions were generated by
�rst processing the whole input texture image)8 globally, obtaining
a distorted texture )3 . Vertices within a spherical radius of 5% from
a given landmark ! were then marked as belonging to the local
neighborhood of ! (Figure 2). A localized radial basis function 5
as de�ned by Schaback et al. [2001] was then used to blend this
area with its neighbors to avoid a noticeable hard edge as follows:
(1 � 5 ) ⇤)8 + 5 ⇤)3 . Two image-based distortions were studied:

Blur. A common distortion across visual computing applications
is blur. It may be introduced in many situations - faulty scanning,
naïve compression, or as a byproduct of training a neural network
that is unable to reproduce �ne detail of the texture.We generate blur
by employing a Pyramid decomposition as implemented in OpenCV
[2000]. The texture image is downsampled in 4 and 6 pyramid levels
for artifact intensities 1 and 2, respectively, and then upsampled via
bicubic interpolation back to its original size.

Compression. Texture compression is a popular method to re-
duce �le size and aid storage and transmission. Unlike the other
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(a) Original Texture (close-up) (b) Localized blending weight

(c) Full Blurred Texture (d) Blended Texture Image(a) Mesh with region ball, and its UV map

Fig. 2. This figure illustrates the method used to generate localized distor-
tions on texture for the blur and compression artifacts. A spherical neigh-
borhood of a landmark is analyzed, and the original and distorted textures
are blended via a radial function (see Section 3.3.1 for detail).

(a) Original (b) Simplified

(d) UV Mesh (close-up) (e) Partial Simplified UV

(c) Textured Simplified

Fig. 3. Regional simplification for meshes. Inside a ball region of a given
landmark (nose tip as illustrated), we remove the triangles inside and re-
generate the triangulation with a smaller vertex budget. Then we sample
the original UV map to reconstruct the shape and texture.

distortions studied in this work, it is di�cult to abstract image com-
pression from a speci�c algorithm. We use the popular JPEG format
[1992] as implemented in OpenCV [2000], applied at compression
ratios of 10% and 7% for artifact intensities 1 and 2.

3.3.2 Geometry distortions. We selected three geometry distortions,
following the template set in the work of Wolski et al. [2022]. The

noise distortion is applied locally in the same way as the texture
distortions, while smoothing leverage a constrained optimizer, and
simpli�cation is using the method in Figure 3.

Noise. A common distortion that can be introduced in many parts
of a visual computing pipeline is noise. We add Perlin noise [2002]
along the normal directions for the mesh vertices. The frequency of
the noise is 2 cycles/mm following the highest frequency version
studied by Wolski et al. [2022], as low-frequency noise is not visible
when applied locally. The amplitude is set to 10% and 15% for the
intensity 1 and 2, respectively.

Smoothing. In applications, smoothing can be introduced by errors
in simpli�cation algorithms, mesh reconstruction or decimation, re-
meshing, and faulty scanning. In their work, Wolski and colleagues
[2022] employed Laplacian smoothing [Witkin 1987], which is un-
suitable for localized distortions [Jacobson et al. 2010]. Instead, we
apply constrained biharmonic smoothing [Botsch and Kobbelt 2004]:
outside a spherical region surrounding each landmark, vertices are
�xed, and biharmonic weights are applied for the near-landmark
region. We use this target as the high strength distortion (level 2)
and then linearly blend (80%) with the input for the lower strength
version (level 1).

Simpli�cation. Finally, simpli�cation is a technique commonly
employed to reduce the polygon count of a geometric representa-
tion. This is useful for compression or when using distance-based
adaptive techniques like level-of-detail rendering (LOD). To alter
the mesh, simpli�cation was carried out in the UV domain. For a
sphere surrounding a given landmark, the UV mesh is locally re-
triangulated using the Triangle algorithm [Shewchuk 2005] with
either 10% or 0% of the original internal vertices for artifact intensi-
ties 2 and 1, respectively.

3.4 Summary
In summary, our dataset consists of 3 base head scans. 2 texture and
3 geometry distortions are applied for a total of 5 unique artifacts,
each of which can take 2 di�erent strengths. The geometry noise
distortion applied to each landmark is shown in Figure 9. All dis-
tortions applied to two representative landmarks for each unique
face are shown in Figure 11, and the e�ect of di�erent strengths
on all the artifacts are shown in Figure 10. This results in a total of
3 ⇥ 5 ⇥ 2 ⇥ 32 = 960 unique meshes, not counting the reference.

4 USER DATA COLLECTION
4.1 Experiment participants
Before the main portion of the study, several rounds of piloting were
employed to tune in experimental procedures, hardware setup, and
meaningful distortion parameters (three pilot studies, N=10, 9, and
12). Finally, 72 naïve participants took part in the main portion of
our study over the course of 6 weeks. All subjects were externally
recruited by a specialized �rm, forming a demographically balanced
pool, signed informed consent forms, and were �nancially compen-
sated for their work. Our data collection e�ort was approved by a
third-party ethical review board.

ACM Trans. Graph., Vol. 9, No. 4, Article 39. Publication date: March 2024.
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4.2 Hardware Setup
The study was conducted in a dedicated experimental room. Stim-
uli were shown on a 31-inch professional reference monitor (Eizo
CG3146). The displaywas set to amaximum luminance of 300 23/<2,
with an sRGB EOTF, P3 color primaries, and a 60Hz refresh rate.
The display was calibrated daily via its built-in colorimeter to ensure
stable performance. Participants were seated comfortably at approx-
imately 3 picture heights from the display, and ambient light was
dimmed to avoid re�ections on the picture. Participant responses
were recorded using a compact 3-button keyboard, with the leftmost
and rightmost buttons used to record their subjective assessment.

4.3 Experimental So�ware
Our study was implemented in the Unity game engine3, and ren-
dered in real-time using distortedmodels that were generated o�ine,
using the software packages libigl [Jacobson et al. 2013], OpenCV
[Bradski 2000], and Triangle [Shewchuk 2005]. Subjects were per-
mitted to rotate the models horizontally by up to 60� on each side,
in which case both the test meshes and reference rotated in the
same manner to enable direct comparisons. Models �rst appeared
at the maximal rotation angle for a randomly selected orientation
to avoid a left-right bias. If participants did not interact with the
experimental suite, the meshes began to slowly rotate after a short
delay, which was identi�ed in piloting as being helpful to users.

4.4 Stimulus Rendering
In addition to the models themselves, lighting must be de�ned to
generate a stimulus. As our goal is to allow for a clean experimental
setup where subjects are able to clearly see all portions of the stimu-
lus, we adopt the approach of the recent work byWolski et al. [2022].
A distant top-right source, similar to natural outdoor conditions, is
used as the main illuminant, and a secondary lower-intensity light
is added from the bottom-left direction to avoid strong shadows.
Unlike this work, however, our subjects are rendered with full color,
as textures were found in testing to be a key component driving
saliency and necessary to faithfully represent key facial regions like
the eyes andmouth. An undistorted reference was rendered between
the two test models to provide a better basis for comparison.

4.5 Experimental Procedure
To simplify the experimental task, we employed a 2-alternative-
forced-choice procedure (2AFC), in which the subject’s goal is to
select which of two stimuli is less distorted (more similar) in rela-
tion to the reference. This type of experiment was found to achieve
higher accuracy when measuring threshold visibility [Perez-Ortiz
et al. 2019], which is closely related to our task. Notably, this also
mitigates the e�ects of model-speci�c imperfections, as these would
be present in both reference and test conditions. Prior to the study,
participants received a comprehensive brie�ng explaining the setup
and experimental task. Following a monitored training procedure,
participants performed the main portion of the experiment, which
consisted of 250 trials. Sessions lasted an average of 49.6 minutes,
including a midpoint break and followed by a post-experiment qual-
itative survey. A still screen from the study is shown in Figure 4. A
3https://unity.com/

timer was added to the bottom right of the frame to help participants
track their timing, but duration constraints were not enforced.

4.6 Sampling
Section 3.4 outlines the total number of uniquemeshes present in our
distortion dataset. In order to obtain a single comparable scale, we
need to compare di�erent regions, distortion types, and magnitudes
to each other. If tested naïvely, this would result in

�960
2
�
= 460320

pairwise comparisons, which would be impossible to perform in
a reasonable time frame. To avoid this problem, we employed an
active sampling method, ASAP [Mikhailiuk et al. 2021], which uses
expected information gain maximization to optimally schedule the
next trial based on all previously collected data. Notably, it is su�-
cient for ASAP to run just 1 comparison per unique distortion per
user. To further reduce the number of required trials, we only study
1 base mesh at a time and treat sided distortions as equivalent to
each other, selecting right or left sides at random during runtime (as
detailed in Section 3.2). This results in 1⇥5⇥2⇥ (6+13) = 190 unique
distortions. In piloting, we found that the value of the reference is
signi�cant for an accurate interpretation of the scaled results, so we
empirically added 5 additional instances of the undistorted reference
to the sample set. An additional 55 (⇡ 30%) trials are added at the tail
end of the experiment, for a total of 250 comparisons per participant,
resulting in a manageable study duration. 72 participants performed
the study (28 for head 1, 23 for head 2, and 21 for head 3).

4.7 Data Processing
Data was converted to a perceptual JOD scale using the pwcmp
library [Perez-Ortiz and Mantiuk 2017] (see Section 2.3). Outlier
detection was performed as described by Perez-Ortiz and Mantiuk
[2017], with a typical likelihood threshold of 1.5, resulting in the
removal of 3 participants. Bootstrapping with 100 samples was used
to calculate con�dence intervals (Figure 6). Further, we performed
N-way analysis of variance (ANOVA). As expected, signi�cant vari-
ables included artifact type (? ⌧ 0.01), artifact strength (? ⌧ 0.01),
and artifact location (? ⌧ 0.01). The side of the face on which a
distortion appeared was found not to be signi�cant (? = 0.36), vali-
dating our assumption that symmetrically mirrored distortions are
analogous and are treated equivalently in the remainder of this work.
The base model used was also not found to be signi�cant (? = 0.66),
which is an encouraging sign that the facial saliency map we built
can generalize to other models. No signi�cant between-factor inter-
actions were found (see the supplementary material Section D for a
full breakdown).

5 RESULTS
Perceptual scaling (as detailed in Section 4.7) was performed twice:
once aggregating across all artifacts and again for each of the ex-
amined artifacts separately. The former is shown in Figure 5. Note
that the reference is e�ectively one of the examined conditions,
and we translate the dataset to ensure its value is set to 0 JODs by
convention. Reinforcing our assumption that regions of the face
have di�erent perceptual weights, signi�cant variations in the visi-
bility of artifacts can be seen. Areas like the eyes, nose, and mouth
show much higher values than those of the upper jaw, jaw joint,
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Fig. 4. Participants are asked to select the le� or right mesh as being less
distorted with respect to the reference, shown in the center.

and forehead. This is likely due to dual in�uences - both intrinsic
perceptual importance, as well as practical visibility of artifacts in a
given region. As expected, distortion strength increases the mean
JOD output in all cases. A separate analysis per distortion is shown
in Figure 6 and Figure 22 (in suppl.), and is discussed in detail below.

Geometric distortions. The top three rows of Figure 6 relate to
geometry-based artifacts, namely smoothing, noise, and simpli�ca-
tion. Note that these artifacts are generally stronger on the left side
of the table, representing points in the center of the face. This is un-
derstandable, as the geometrically outstanding areas of the face that
are also likely to be experientially important, like the nose and the
lips, are located along the center axis. Curiously, the sensitivity on
the outer eyes corner to geometric noise and simpli�cation is high,
likely due to changes in the face pro�le when rotated. Conversely,
sensitivity in �atter regions like the cheeks and jaw is low.

Texture distortions. Figure 6 shows values for texture distortions
in the bottom two rows. Notably, the sensitivity of the eye region
to texture distortions is exceptionally high, suggesting both their
unique perceptual importance and being strongly a�ected by tex-
ture artifacts due to the relatively detailed characteristics. Lips and
eyebrows are also strongly a�ected, likely due to the presence of
strong texture edges in these regions. Alternatively, the nose tip is
less a�ected by texture distortions than geometric ones. The Jaw,
forehead, and nose side regions are least a�ected by these artifacts,
possibly due to the relatively low frequency of the textures present
and low perceptual weight.

6 APPLICATIONS
In this section, we outline two example algorithms for e�cient
rendering of face models leveraging facial saliency maps. Given
the perceptual scaling value de�ned on the sparse landmarks, we
perform biharmonic interpolation [Stein et al. 2018] to produce a
continuous scalar map de�ned on the whole surface (see Figure 1).

Note that applying FaceMap to meshes that are not a part of our
dataset requires a topology transfer to a new template. We employed
a semi-manual procedure to obtain the results in Section 6.1 and
Section 6.2, assuming a target template mesh with shared connec-
tivity (triangulation) and a �xed number of vertices. When di�erent

L
ip

 B
o
tt
o
m

L
ip

 T
o
p

N
o
s
e
 T

ip

N
o
s
e
 B

ri
d
g
e

G
la

b
e
ll
a

T
e
m

p
le

E
y
e
b
ro

w
 S

ta
rt

In
n
e
r 

E
y
e

N
o
s
e
 S

id
e

M
o
u
th

 C
o
rn

e
r

E
y
e

E
y
e
b
ro

w
 C

e
n
te

r

L
o
w

e
r 

J
a
w

O
u
te

r 
E

y
e

L
o
w

e
r 

C
h
e
e
k

U
p
p
e
r 

C
h
e
e
k

E
y
e
b
ro

w
 E

n
d

U
p
p
e
r 

J
a
w

J
a
w

 J
o
in

t

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

)
D

O
J( 

ytili
bi

si
v 

e
vit

al
e

R

Reference

Confidence range

Level 1

Level 2

Fig. 5. This figure shows results for all studied locations on the face, ag-
gregated across artifact types. Lower distortion intensity (level 1) is shown
in blue, and higher (level 2) in red. Vertical lines represent 95% confidence
intervals. Dashed horizontal lines represent the confidence interval of the
reference, whose value is scaled to 0 by convention.

faces are semantically aligned, our saliency map can be de�ned per
vertex. For a new template, (e.g. compare Figure 7 and Figure 18 for
di�erences in face topology and UV), we use the Wrap4D software4
to place the 32 landmarks used in the main study. This manual pro-
cess took approximately 5 minutes, and was performed once per
template. We then perform a closest point interpolation to transfer
each of our distortion-driven saliency maps onto the new topology,
and rasterize the value as an image in the texture space. Note that
within each application di�erent subjects typically share the same
UV map, so the transferred map can be applied as-is.

6.1 Re-meshing
To demonstrate how to leverage collected user input in a tradition-
ally geometry focused task, we perform a saliency-guided targeted
re-meshing via the paradigm by Alliez et al. [2002]. Given a scalar
�eld for the ideal edge length de�ned on the UV domain, we produce
an adaptive 2D planar mesh with the Mmg Platform5 [Dobrzynski
and Frey 2008]. Using the UV map optimized with uniform low dis-
tortion as described by Rabinovich et al. [2017], new sample points
are mapped to 3D and produce a mesh with a di�erent topology.

To de�ne the scalar �eld value corresponding to the desired edge
length at each location, we make use of the simpli�cation saliency
map. We adjust a global error parameter until the total triangle
count is at the desired value, then produce our �nal meshes (Fig. 7).

4https://docs.r3ds.com/Wrap/4DProcessingPipeline/4DProcessingPipeline.html
5https://www.mmgtools.org/
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Fig. 6. This figure represents the JOD values recovered for our subjective study for all artifacts and locations on the face. By following the table horizontally,
we can observe that each artifact’s visibility can vary widely across locations - e.g. the le� side of the table, containing landmarks on the center line, shows
more sensitivity than points on the sides, with the notable exception of the eyes and mouth. If we observe the table along vertical lines, we can see that for
each location on the face, the impact of two artifacts can be very di�erent - for instance, the eye is most strongly a�ected by blur, while the nose tip, is most
a�ected by geometry simplification and smoothing (as shown in Figure 11).

(a) Uniform (b) Spectral (c) FaceMap (d) Reference

Fig. 7. A mesh simplification algorithm is guided by saliency maps to gener-
ate adaptive density meshes with 6% of the original vertices (Sec. 6.1). From
le�-to-right, meshes use the following strategy: a baseline with uniform
sampling; an automatic saliency map generated by the method of Song et al.
[2014]; FaceMap (ours); the full-density reference mesh. Note the di�erences
in the nose and eye regions.

We conducted a validation study (# = 9 naïve participants) to
test the e�ect of using FaceMap. 4 new models were obtained in
the same way described in Sec. 3.1. They were compressed down to
30%, 20%, 10%, 8.3%, 6.6% and 5% of the initial 12 060 triangles (front
face only) using the method described above, employing either a
uniform grid, FaceMap, or an automatically generated saliency map
using the method of Song et al. [2014]. After a training session,
participants were tasked with rating each model on a scale of 1-10.
N-way ANOVA showed FaceMap-based versions were signi�cantly
preferred to alternatives (? ⌧ 0.01, see Figure 8). Participant iden-
tity was also found to be a signi�cant factor (? ⌧ 0.01), possibly due
to di�erent strategies chosen by users, but face model was not signif-
icant (? = 0.44). More details on this study and associated statistical
analysis can be found in the supplementary sections (Section A.1
and Section D, respectively). Future work can aim at incorporating
FaceMap priors into geometry-aware simpli�cation methods [Liu
et al. 2017], extending e�ciency gains.

6.2 Gaussian Spla�ing
3D Gaussian Splatting (3DGS) [Kerbl et al. 2023] optimizes a scene
captured from multi-view images using a set of 3D anisotropic
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Fig. 8. This figure shows the results of our validation study for the saliency-
guided mesh simplification application. The x-axis shows simplification as
a percentage of the reference, and the y-axis shows the subjective scale
employed in the study. Vertical bars show standard error. Note that FaceMap-
based results are consistently preferred over the alternatives - for example,
FaceMap meshes at 8% density obtained nearly the same score as uniform
meshes at 20%.

Gaussians. This method presents a trade-o�: increasing the number
of 3D Gaussians improves quality, but requires more computational
and memory resources [Lee et al. 2023]. Limiting the number of 3D
Gaussians is crucial for e.g. compute constrained mobile devices.

We employ the multi-view face dataset [Wang et al. 2024], consist-
ing of 160 views of each face, 3D reconstructed mesh, and uv-texture.
We examine two 3DGS initialization schemes: uniformly sampled
on the face as a baseline, and using a FaceMap-guided adaptive
sampling. We then perform 3DGS optimization while maintaining a
constant number of 3D Gaussians for 30,000 iterations. To validate
this approach, we ran a user study with 11 additional naïve partici-
pants. The initialization schemes were compared in a 2AFC task at
5 di�erent density levels. The results can be seen in Fig. 12. N-way
ANOVA analysis showed FaceMap initialization was preferred sig-
ni�cantly more often (? ⌧ 0.01). No signi�cant e�ect of face model
(? = 0.25) was present. Participant identity was again a signi�cant
factor (? ⌧ 0.01). No signi�cant between-factor interactions were
found. More details on this study and associated statistical analy-
sis can be found in the supplementary sections (Section A.1 and
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Section D, respectively). See supplementary Sec. A.2 for additional
details.

7 LIMITATIONS AND FUTURE WORK
Identity. The sex or race of the model and viewer may a�ect the

perception of facial saliency [McDonnell et al. 2021]. Although we
did not �nd the face model to be a signi�cant e�ect in our main or
validations studies, future work could explore this possibility.

Expressions and Animation. Our studies were performed on faces
with neutral expressions. It is possible that variations in a model’s
expression would produce an e�ect on the perceived importance of
facial regions (such as a smile increasing the saliency of the mouth).
Our study design can be leveraged to obtain directly comparable
JOD-scale outputs for varying model expressions in future work.

3D Graphics. Our work examines the perception of geometry and
texture artifacts on faces. The interplay between these factors is
complex, and exploring it in detail is beyond the scope of this paper.
However, we believe our data can be used in this type of e�ort, as we
provide results on the visibility of distortions modifying one while
keeping the second �xed. Analysis of our data could be bene�cial
for a complete model in the future.

Facial features. Our study did not investigate the e�ect of acces-
sories or facials features, such as beards and glasses on FaceMap.

Template transfer. Using FaceMap on new templates may require
a manual matching step as described in Section 6.

8 CONCLUSIONS
We performed the �rst distortion-driven study on the perceptual
importance of regions of the human face. A number of distortions
relevant to modern visual computing applications were studied,
and regions were selected that sampled the face both spatially and
semantically. Localized distortions were then applied, generating a
dataset consisting of 960 unique models.

A psychophysical study (# = 72) was conducted, obtaining over
18, 000 subjective comparisons. This data was processed and con-
verted to a uni�ed subjective quality scale in JODs, and analyzed
statistically, producing quanti�able insights into the relative im-
portance of face regions for di�erent distortion types. Finally, we
explored applications of our facial saliency map for geometry re-
meshing and Gaussian Splatting. Subjective studies were used to val-
idate that FaceMap improves performance when compared against
a uniform baseline and automatic saliency estimators.
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Fig. 9. Models distorted with geometry noise at each landmark location in our dataset (symmetrical regions on the le� side not shown). Landmarks were chosen
to obtain good coverage of the face, as well as to cover semantically important locations. To view, we recommend zooming in until each face approximately
covers the height of the screen, as presented during our study. Note that distortions on the side of the face may not be visible in this front-facing render.

Fig. 10. This figure shows all distortion types at a single location (upper lip) at both levels of strength. To view, we recommend zooming in until each face
approximately covers the height of the screen (as presented during our study).
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Fig. 11. This figure illustrates all distortions (geometry: simplification, smoothing, noise; and texture: compression, blur) applied to two locations (nose tip
and right eye) for each of the base heads in the dataset. Note that as a geometrically salient feature, the nose is especially a�ected by simplification and
smoothing. Conversely, the eye is especially a�ected by blur and compression.

Fig. 12. Faces are rendered using Gaussian Spla�ing, as described in Sec. 6.2. From le� to right, models are presented with an increasing total number of
Gaussians. For each model, le� and right sides show FaceMap and uniform initialization, respectively. Bars above each model show the overall preference in
our validation study over all examined faces between the two initializations, and insets show detail in the eye region. Error bars show standard error.

ACM Trans. Graph., Vol. 9, No. 4, Article 39. Publication date: March 2024.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Saliency
	2.2 Face Datasets and Perceptual Quality
	2.3 Subjective Studies

	3 Local facial distortion dataset
	3.1 Base meshes
	3.2 Distortion Locations
	3.3 Distortion Types
	3.4 Summary

	4 User Data Collection
	4.1 Experiment participants
	4.2 Hardware Setup
	4.3 Experimental Software
	4.4 Stimulus Rendering
	4.5 Experimental Procedure
	4.6 Sampling
	4.7 Data Processing

	5 Results
	6 Applications
	6.1 Re-meshing
	6.2 Gaussian Splatting

	7 Limitations and Future Work
	8 Conclusions
	Acknowledgments
	References
	A Applications
	A.1 Re-meshing Validation Study Details
	A.2 Gaussian Splatting Validation Study Details
	A.3 Validation Conclusions
	A.4 Texture Compression

	B Randomized landmark Validations
	C Correlation analysis with Automatic Methods
	D N-way ANOVA analysis

