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Fig. 13. The relation between JOD value and probability of selection. If a
stimulus is 1 JOD away from the reference, this can be interpreted as the
reference being chosen 75% of the time in a 2AFC task in our experiment.

A APPLICATIONS
A.1 Re-meshing Validation Study Details
Our re-mesh application and user study are described in Sec. 6.1.
Pre-rendered images were used as stimuli, shown with a slight
rotation o�-center. As in the main study, a timer was present but
not enforced. The labeled reference face was always shown on the
right side of the screen, and test faces on the left.

After a brief training session allowing the participants to familiar-
ize themselves with a number of conditions, including all rendering
modes and face models, participants were tasked with rating the test
face in terms of quality on a scale of 1-10. Qualitative descriptions
were placed under the scale ("bad", "poor", "fair", "good", "excellent"),
as shown by Madhusudana et al. [2021]. The study consisted of 4
unique face models, each of which was rendered at 6 di�erent mesh
resolutions (30, 20, 10, 8.3, 6.6, and 5% or the original), and using
one of 3 resampling allocation methods (FaceMap, uniform, or the
automatic saliency map of Song et al. [2014]). As FaceMap is only
de�ned in the face region, the neck, ears, and hair of the model were
rendered identically (as in the reference), and only the face area had
modi�cations. Each mesh was presented 3 times throughout the
experiment. Including 12 training trials, the total number of trials
was: 4 ⇥ 6 ⇥ 3 ⇥ 3 + 12 = 228. Study duration averaged 40 minutes.

Figure 19 shows an example of the automatic saliency map and
the process of creating adaptive UV. Figures 16 and 17 show all
models used in this study. Note that as the overall density of the
mesh increases, the quality of faces improves independently of the
re-meshing method used, which reduces the di�erence between the
two rendering modes.

A.2 Gaussian Spla�ing Validation Study Details
Our 3DGS application and validation are described in Sec. 6.2. Pre-
rendered videos were used as stimuli, showing a rotating face, simi-
lar to the main experiment, but interactive rotation was not present.
As in the main study, a timer was present but not enforced.

Participants were tasked with answering which face has better
quality - left or right in the 2AFC task. The study consisted of
10 unique face models, each of which was rendered at 5 di�erent
allocation densities. As FaceMap is only de�ned in the face region,
the neck, ears, and hair of the model were rendered identically

(uniform allocation), and only the face area was modi�ed between
allocation conditions. Each pair was presented twice - uniform on
the left and FaceMap on the right and vice-versa. The total number
of trials was: 10⇥ 5⇥ 2 = 100, presented in random order. The study
lasted for an average of 34 minutes.
Figure 14 shows all models used in this study. Note that as the

overall number of Gaussian increases, the quality of faces improves
independently of allocation, which reduces the di�erence between
the two rendering modes. As shown in Fig. 12, FaceMap is strongly
preferred for low-bandwidth models (98.6% preference for 1: , 91.8%
preference for 4: , 75.4% preference for 16:), but this e�ect is re-
duced for the higher quality renders (54.1% preference for 65: , 57.7%
preference for 262:). An additional qualitative comparison using an
initialization derived from [Song et al. 2014] on a template mesh (as
described in Supplementary A.1) is provided in Figure 15.

A.3 Validation Conclusions
As shown in Figs. 8 and 12, FaceMap is strongly preferred for low-
bandwidth models. As the model quality increases, the gain in qual-
ity due to FaceMap is less obvious for both applications. This leads
us to conclude that perceptual priors like FaceMap are especially im-
portant to improve visual quality of bandwidth and memory limited
applications, such as mobile rendering.

A.4 Texture Compression
Similarly to our geometry simpli�cation application (Sec. 6.1), the
texture of a face model can also be compressed by employing a quad-
tree-based image compression to e�ciently reduce the memory
requirement for storage [Shusterman and Feder 1994] or to speed
up machine learning algorithms [Jewsbury et al. 2021]. A quad-tree
is built from a given image patch recursively by analyzing the detail
metric on the patch and subdividing it by four if a threshold is not
met until it reaches a maximum depth speci�ed by the user.

Our facial saliency map can be integrated to guide this compres-
sion. The texture image is weighted using the overall saliency map.
As a result, the computed detail metric will be low for non-salient
regions, prompting fewer subdivisions in those areas. We recon-
struct the original image using a built tree, where each tree leaf is
replaced with a square of the mean color. A result of this method
is shown in Figure 18, contrasted against a mesh obtained via the
default detail metric based on a weighted histogram di�erence. Note
that in this example, our map is applied on a mesh with di�erent
connectivity and UV map, and we use the same set of landmark
locations to de�ne and interpolate the saliency values.

B RANDOMIZED LANDMARK VALIDATIONS
To study the impact of our choice of landmark locations (Section 3.2)
and interpolation scheme used to obtain a continuous importance
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map of the face (Section 6), we designed an additional validation
study with randomized landmark locations.
We randomly selected 8 additional landmark locations by plac-

ing a box on the UV map of the face as seen from a frontal angle,
and performed random sampling of 2D points (seed=6, shown in
Figure 20, left). Next, the artifact generation algorithm was ran as
described for our main study (Section 3.3) on the same three base
face models. We then proceeded to repeat our main study’s steps
for this new randomized dataset following the same protocols and
using the same hardware for an additional 10 participants.

The same scaling procedure was employed to compute JOD scores
for the new randomized landmarks (no outliers were detected).
These newly measured values were then compared against the inter-
polated result from the original model at the same locations (shown
in Figure 20, right). Datapoints showed good consistency, with root
mean squared error between the subjective and interpolated data
points at 0.242 JOD, comparable to the 0.209 JOD standard deviation
of the bootstraped baseline data (see Figure 22). Further, the two
groups of values present a Pearson Linear Correlation Coe�cient
of 0.83 (? ⌧ 0.05), and a Spearman’s Rank Correlation Coe�cient
of 0.74 (? ⌧ 0.05). These values can be interpreted as a strong
correlation [Schober et al. 2018], demonstrating that our original
semantic anchor choice and interpolation scheme does not signi�-
cantly distort the results for other points on the face.

C CORRELATION ANALYSIS WITH AUTOMATIC
METHODS

Many automatic methods to compute saliency exist, some of which
target 3D models and could be applied to meshes representing faces,
like the ones used in this study. We set out to evaluate the accu-
racy of automatic saliency estimators and metrics in predicting the
importance map obtained from our experimental data.
We selected two representative methods for analysis: the no-

reference saliency estimator of Song et al. [2014], and the reference-
based textured mesh Graphics-LPIPS distance metric developed by
Nehmé et al. [2023] (both discussed in Section 2).
The saliency map for the method of Song et al. [2014] was ob-

tained as detailed in Section 6 and shown in Figure 19.
The method of Nehmé et al. [2023] targets the perception of

3D models, but requires 2D images as input. To accommodate this
requirement, we employed a setup mimicking that described by the
authors, including directional lights coming from the top right, and
choose 3 relevant views to render images at a resolution of 650⇥550.
For each of the distorted meshes in our study (see Section 3.3), we
produced 3 renderings as seen from views directly in front, 45� to
the left and 45� to the right. We then decompose the rendering into
overlapping 64 ⇥ 64 patches, following the paper. Using the pre-
trained model, we computed the averaged predicted perceptual loss
with respect to the reference image of the same model, generating
values for each of the conditions measured in our experiment, then
average the values for corresponding subject and level.
Finally, we analyze the predictive power of the obtained results

for both methods via correlation analysis (illustrated in Figure 21).
The saliency map of Song et al. [2014] obtains a SROCC of 0.306
(? ⌧ 0.05) and a PLCC of 0.234 (? = 0.0225). The metric evaluations

of Nehmé et al. [2023] result in a SROCC of 0.190 (? ⌧ 0.05) and a
PLCC of 0.234 (? ⌧ 0.01). These results can be classi�ed as having
weak correlation with the study data [Schober et al. 2018], indicating
they are not capable of accurately predicting facial importance. This
is not surprising, as neither method models the unique aspects of
perception of human faces, as done in our study.

D N-WAY ANOVA ANALYSIS
Table 1 shows the p-values associated with condition of our studies.

Main Study ?-value

distortion strength 1.8 ⇥ 10�11
distortion type 7.3 ⇥ 10�8
distortion location 3.3 ⇥ 10�4
strength:type 0.97
strength:location 0.13
type:location 0.06
strength:type:location 0.99

Gaussian Study ?-value

method 1.5 ⇥ 10�21
model 0.24
participant 3.8 ⇥ 10�3
method:model 0.08
method:participant 0.92
model:participant 0.79
method:model:participant 0.43

Re-meshing Study ?-value

method 7.1 ⇥ 10�65
model 0.3
participant 3.3 ⇥ 10�6
level 9.6 ⇥ 10�206
method:model 0.031
method:participant 0.1
method:level 0.71
model:participant 0.8
model:level 0.25
level:participant 0.0058
method:model:participant 0.71
method:model:level 0.55
method:participant:level 0.29
model:participant:level 0.62
method:model:participant:level 0.074

Table 1. N-way ANOVA results for the Main Study (Section 5, top), Gauss-
ian Spla�ing application (Section 6.2, mid), and Re-Meshing application
(Section 6.1, bot).
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Fig. 14. This image shows all the stimuli presented in the Gaussian Spla�ing validation study, described in Sec 6.2. Rows show di�erent base faces, and
columns show conditions with an increasing number of Gaussians from le� to right. Each face is split vertically showing the FaceMap allocation on the le�,
and uniform allocation on the right. Please zoom in to see details.
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Fig. 15. A qualitative comparison for Gaussian Spla�ing with 1K primitives. Initialization with uniform weight, a spectral saliency weight, and our facemap
weight is shown (as described in Supplementary 6.2). Note that Facemap’s results consistently allocate higher quality for the eye and mouth regions, which
were found to have greater perceptual importance in our study. Please zoom in to see the details.
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Fig. 16. This image shows all the levels of compression used in the geometry compression validation study (Sec. 6.1) for identities 1 and 2. Please zoom in to
see the details.

ACM Trans. Graph., Vol. 9, No. 4, Article 39. Publication date: March 2024.



39:vi • Jiang et al.

FaceMap

Uniform

Spectral

FaceMap

Uniform

Spectral

5%          6%         8%         10%       20%       30%

5%          6%         8%         10%       20%       30%

Reference

Reference

Fig. 17. This image shows all the levels of compression used in the geometry compression validation study (Sec. 6.1) for identities 3 and 4. Please zoom in to
see the details.
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(a) Original (b) Quadtree Texture Compression (c) Saliency weighted Compression

Fig. 18. We show texture image compression with a quad-tree-based approach. (a) Original mesh and texture. (b) using the default metric, we obtain a texture
with 11098 color nodes. (c) using a saliency-guided metric, we obtain texture with 11290 color nodes, with a higher quality in the eye and mouth regions. Note
that our method generalizes well despite a di�erent topology and texture map for the base asset.

(a) Spectral Saliency Map (b) 5% simplified UV (c) 6% simplified UV (d) 8% simplified UV

Fig. 19. (a) shows the spectral saliency map from the method of [Song et al. 2014]. The map place emphasize on features with varying curvature, including
eyes and region between nose and mouth. (b,c,d) And the UV domain of 3 di�erent simplification levels (5%, 6.6%, 8.3%) are shown.

0 0.5 1 1.5 2

0

0.5

1

1.5

2

noise
jpg
smooth
resample
simp

Validation Study Visibility (JOD)

In
te

rp
ol

at
ed

 F
ac

eM
ap

 V
is

ib
ili

ty
 (

JO
D

)

Fig. 20. (Le�) In pink, the randomized landmarks used in the validation study described in Section B. White dots show the original landmarks from the main
study for reference. (Right) A comparison of the subjective scores of the randomized landmarks along the x-axis (see Section B) against the interpolated results
for the same points from the main study along the y-axis. The dashed line represents identity.
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Fig. 21. This figure illustrates the relationship between our study’s results (y-axes) and two automatic methods (x-axes), as described in Section C: Nehmé
et al. [2023] (Top) and Song et al. [2014] (Bo�om).
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Fig. 22. This figure shows the results of our main study across all studied locations on the face and di�erent artifact types, aggregated across 2 levels. Vertical
lines represent 95% confidence intervals. The dashed lines represents the 95% confidence interval for the reference undistorted model.
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