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S1 Related Works
S1.1  Optical see-through AR displays

AR displays primarily consist of a display unit and combiner optics,
which serve to display the virtual image and overlay it on the real-
world background, respectively. Optical see-through designs have
the advantage of allowing users to see the natural world simultane-
ously with the virtual content, which brings advantages in terms of
natural real-world interactions and immersion. However, the light
from the real-world background interferes with the virtual image
being displayed.

Several approaches have been proposed in commercial AR de-
vices to preserve contrast. Dimming ambient light using an active
per-pixel dimming layer [Cakmakci et al. 2004; Kiyokawa et al. 2000;
Magic Leap, Inc.] provides good control, but also increases the com-
plexity of the display design. As a consequence, some commercial
solutions [Microsoft Corporation] choose to adopt static dimming
filters similar to sunglasses. While simple, this approach can degrade
the user’s experience - static dimming may become excessive in
dark environments, but insufficient in overly bright ones. Finally,
an AR display that has good visibility without using any dimming
would require a strong display engine paired with high-throughput
imaging optics, which significantly increases the required power
draw, which is challenging for a wearable device [Chen et al. 2024].

S1.2  Contrast-based rendering and assessments

Unlike machine vision cameras, the human visual system responds
differently based on the change of the visual signals over the back-
ground and the spatial frequency of such stimuli. Modern displays
leverage this perceptual behavior to develop advanced rendering
techniques such as foveated rendering [Guenter et al. 2012; Tur-
sun et al. 2019] and tone mapping [Reinhard 2020; Tumblin and
Rushmeier 1993], which spatially and photometrically redistribute
rendering resources to preserve visibility while operating within
limited computational resources.

As a counterpart, visual difference predictors [Daly 1992; Man-
tiuk et al. 2024], built upon contrast sensitivity functions, have been
widely used to evaluate the performance of the rendering techniques.
However, since these metrics are primarily tailored for conventional
direct-view displays, there was a recent observation that they may
not fully capture or predict content visibility shown in AR environ-
ments [Chapiro et al. 2024], highlighting the importance of low-level
investigations revisiting the contrast perception in such viewing
environments.
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S2  Experiment stimuli

Below, we provide a detailed description of the stimuli used in Ex-
periments 1 and 2. In both our experiments, the reference stimulus
was composed of foreground and background images, split over two
focal planes. Sec. S2.1- S2.2 explain how the reference foreground
and background images were generated, respectively. The test stim-
uli in both experiments consisted of a fused image displayed on a
single plane. The optical models used to create these stimuli are
explained in Sec. S2.3. The full matrix of stimuli used in Experiment
1 and 2 are presented in Tables S2- S3.

S2.1  Foreground image

For each contrast value, defined as the modulated signal over the
average signal, a sinusoidal grating representation can be generated,
modulated in the spatial domain (Y (i) € REXV):

YrG sine (i) = Y + AY cos(2mpu), (81)

where, u denotes the two-dimensional spatial coordinate (u,v) of
the visual angles in degrees, p denotes the spatial frequency given
in a unit of cpd, and the AY is the modulation of the grating. Here,
we formulate the Weber contrast ¢ = AY/Ygg.

The area of the grating that covers the visual field influences the
detection of the contrast [Rovamo et al. 1993]. Thus, we limit the
size of the sinusoidal grating and simultaneously smooth the edges
by applying a spatial aperture. A conventional way is to modulate
the contrast by a radial Gaussian envelope so that the resulting
stimulus forms a Gabor patch:

. u® +0?
YFG,Gabor(u) = YpG + AY cos(2mpu) exp |- 202 (82)

where, o adjusts the size of the Gaussian aperture in a unit of visual
degrees.

S2.2  Background image
The background patterns were generated as follows.
o flat: The ambient light formed by a flat background without
texture.
Yiat () = Yo. (S3)
e bp-noise: To add controllable texture, a bandpass-filtered im-
age is computed as:

pr—noise(a) =R (7:_1 (F (Ywhite-noise) * 7’1)) . (S4)

where, Yyhite-noise is the generated white noise. 7 and ¥~
are two-dimensional Fourier transform and its inverse, re-
spectively. R(-) is the real operator with the complex-valued
input, and H is the transfer function defined in the spatial
frequency domain corresponding to the bandpass filter. For
the bandpass filter, we employ the Butterworth filter defined
in the frequency domain (p) as:
1

1+ (T e P - po) o)

where, py is the central spatial frequency of the filter and oy
is the bandwidth of the bandpass filter, which are both in a
unit of cpd. In the experiment, we use the fourth order (n = 4)

H (p; po, 00) = (S5)
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Butterworth filter with a central frequency matched to that
of the grating, and the filter bandwidth oy is set as 1 cpd.
bp-noise-dynamic: To understand the effect of relative mo-
tion of the background on contrast perception, we addition-
ally formulate a dynamic background as:

pr—noise—dynamic (; t) = pr—noise (17 —u (1) (S6)

where, (1) denotes the additional temporal shift of the back-
ground due to potential movement while fixating on the fore-
ground. To define the motion profile, we assume the occur-
rence of minor head movements, with a speed of 1 degree per
second, can still occur even in a constrained environments.
The direction of relative motion was chosen as orthogonal to
the orientation of the grating provided to the foreground.

S$2.3  Optical fusion models

The optical fusion models used to generate test patterns are listed
in Table S1, adapted from the recent work of Chapiro et al. [2024].
Among the optical fusion models of foreground and background
stimuli, the pinhole model adds the background light without pro-
cessing. pinhole-diplopic adds the background light while account-
ing for diplopia, but not for defocus blur. This would be physically
accurate if the eyes were assumed to act as pinhole cameras. Lastly,
defocus-diplopic simulates both the diplopia and the defocus blur
present due to the dioptric distance of two stimuli.

Defocus blur is simulated based on the model described by Cholewiak

et al. [2018] given the pupil diameter (p). We convolve the back-
ground stimuli with the point spread function (h(ii)) applying an

Table S1. Summary of optical fusion models.

Fusion model (f) Equation (Yerr = f(YrG, Y8G))

pinhole (fp) Yerr = YrG + YBG

pinhole-diplopic (fpp)  Yer=Yec+3 X Yec(id — i)
Je{LR}

defOCuS—dip|OpiC (fDD) Yeff = Ygg + % Z YBG(ﬁ - 17]) * h(ﬁ, AD,p*)
Jje{LR}

Table S2. Conditions tested in Experiment 1. Reference (Ref) and test
(Test) patterns used different combinations of foreground (FG) and back-
ground (BG). For the reference, we present two different stimuli for fore-
ground and background and the background textures differ by the test
conditions. The effective stimuli (Y.f) are fused with different optical blend-
ing models f; and presented as test stimuli on the foreground.

FG BG

) Ref YFG,Gabor 0
Test  Yet = f (YrG,Gabor YBG) 0

DF Ref YFG,Gabor Yflat
Test  Yerr = foD (YrG Gabor YBG) 0

DNS Ref YFG,Gabor pr-noise
Test  Yesr = foD (YrG Gabor: YBG) 0

DND Ref YFG,Gabor pr-nmise-dynamic
Test  Yet = foD (YeG Gabor YBG) 0

DNP Ref Y5G,Gabor Yop-noise
Test  Yerr = fpp (Y5G Gabor YBG) 0
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achromatic blur of a Gaussian kernel as

- 1 llall®
h(u; AD,p) = ——exp |— , S7
(@00, p) = s exp (- 57
where, ||-|| denotes the I-2 norm of the given vector and o is set as

k% IizD. AD denotes the dioptric difference of the foreground and
the background. The value of blur scaling parameter k is chosen
as 0.55 from the model of Cholewiak et al. [2018]. This achromatic
Gaussian blur simplifies the blur generation.

The simulated blur based on the predicted pupil diameter showed
significant discrepancies with the actual blur present in AR scenes
in terms of appearance. To address this issue, we calibrated the
pupil diameter (p* = p/s*) by applying a user-specific scaling factor
(s*), determined via a pre-experiment defocus blur-matching cali-
bration (explained later in Sec. S4). Additionally, we estimated the
interpupillary distance (ipd) of individuals through interactive cali-
bration using grids presented at two different depth planes for each
eye and simulate the diplopic background using the formulation as

iy = (tan™! (ngD)’ 0).

S3  Contrast matching training

Prior to the experiment, all participants were asked to complete a
short training session of contrast matching to familiarize themselves
with the concept of contrast matching, rather than matching other
features such as brightness. Here, the stimuli (Y) were controlled
for contrast as follows:

Y(c) = (Yimg — Yo)e + Yo, (S8)

where, Yimg represents the luminance of the original image, and 1%
is its mean luminance.

Using an image of six different people’s faces, the reference, and
the test with different contrast levels (cyef, and ctest) and luminance
levels (either, Yp= 30 cd/m? or 60 cd/m?) were presented. The con-
trast of the reference image was initialized randomly to be between
0.2 and 0.5, and that of the test image to be between 0.1 and 0.9. The
reference contrast range was set within the supra-threshold range
investigated in the main study.

As in the main experiments, observers adjusted a dial to match
the contrast of the test stimulus to that of the reference stimulus.
Results from 10 trials were recorded, and Fig. S1 shows the matched
contrast ratio (Ctest/crer) for 17 users sorted in a descending order.
If the average log10 contrast ratio within an observer’s responses
exceeded certain thresholds (over 1.1 or under 0.9, experimentally
determined) presented as dashed lines in Fig. S1. One observer was
classified as an outlier, and their results were thus excluded from
the main experiments. The median of the matched contrast ratios,
averaged across the remaining observers, was 1.00, indicating that
the observers did not provide biased contrast matches in this task.

S4  Defocus blur matching

In the paper (Sec. 3.1), we explained the need of using individualized
defocus blur parameters for each observer. This parameter is then
used to create the optically-fused single-plane stimuli as explained in
Sec. S2.3. Here we provide details of the method used to perform this
individual calibration, the results, and comparisons with existing
models from the literature.

Table S3. Conditions tested in Experiment 2. We opted to measure 2
different spatial frequencies for the achromatic stimuli, but only the lower
frequency (2 cpd) for the chromatic ones. This is because the sensitivity of
the chromatic mechanisms of the visual system peaks towards lower spatial
frequencies. The contrast levels cp,se for each color stimulus were chosen in
cone contrast units to be within the display gamut. The foreground of the
reference stimuli and the single-plane test stimuli had the same luminance
for each trial. The background luminance of the reference (Ygg) were chosen
as described in Sec. 4.1 in the paper.

SF (CP d) Chase YFG /[ Yrest

Color direction YiG (cd/m?)

(cd/m?)
1 2,48
03 1 12, 55.7
2 100 4427
1 2,153
Achromatic 08 1o 13, 160.4
100 98
1 2,558
03 1 14, 80
4 100 108, 587
1 2,214
08 1o 15, 225
100 112
1 1
007" 49 14
Red-green 2 100 101
1 2
01y 15
100 104
s 10 12
Yellow-violet 2 100 %
1 2
08 49 15
100 109

Detailed procedure. We collected 10 trials per observer. Observers
were instructed to match the contrast of the noisy background on the
test to the contrast of the noise pattern of reference while focusing
at the fixation target shown on the front plane. The defocus blur
size of the test was adjusted with a controller similar to the main
experiment. Rather than measuring the size of defocus blur directly,
we estimated the parameter rescaling the pupil diameter predicted
by the model [Watson and Yellott 2012], allowsing us to employ this
measured value for different luminance levels.

Although the reference included a fixation target in the fore-
ground, the accommodation state naturally shifted to the back-
ground as observers examined the noise pattern to make their de-
cisions. This natural response in focal shift made the task difficult
for the untrained observers. If the median value of the measured
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Fig. S1. Training result of 17 observers recruited for the experiments.
One of the observers (observer 17) was disqualified with the training results
and data was excluded. Observers are sorted by the matched contrast ratio
values, thus not following the observer ID presented in the paper.

scaling parameter exceeded 2, we repeated the session, allowing for
up to three cycles. If the measured scaling parameter still remained
over 2, we used the measured value in the main experiment.

Results. The defocus blur-matching results are shown in Fig. S2. It
can be observed that the experts who participated in the experi-
ment show consistent results over the trials, but a portion of naive
observers performed the task relatively inconsistently. This result
indicates a potential cause of the larger variance in Experiment 1 for
the conditions involving defocus blur (DNS and DND) as compared
to the conditions that did not involve defocus blur (DF).

Defocus blur-matching by group

-~ ® Group 1 (Authors)
9 © Group 2 (External observers)
g25r $
o
<
a
w oL
Z 2 Y o ©
E 6
@ o
TN | ] o ° 2 e ° o
a e ? o
a [ ]
¢}
1 L L Il L L L L L L L L L L L L L L
1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17
Observers

Fig. S2. Individiual results of defocus blur-matching calibration. The
pupil diameter (PD) rescaling parameters were estimated 10 times for in-
dividual users and sorted by the standard deviation (The observer ID does
not match the one presented in the paper). The plots display the parameter
estimated across 10 trials, with the median value highlighted by a black
edge. Observers were categorized into two groups for analysis. (blue: Group
1 (authors), red: Group 2 (external observers))

Pilot study. In Experiment 1, the defocus blur generated by the
predicted pupil diameter model exhibited a significant difference
compared to the pupil diameter interactively matched using the
defocus blur matching method, as shown in Fig. 6(B). To examine
the effect of defocus blur on the perceived contrast of the fore-
ground scene, we conducted a pilot study with a subset of ob-
servers participated the Experiment 1. This additional study in-
cluded test conditions dual-noise-static-Watson (DNS-W) and
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dual-noise-dynamic-Watson (DND-W), which simulated the de-
focus blur using the predicted pupil diameter model. Note that the
dual-noise-static and dual-noise-dynamic in the main paper were
presented as dual-noise-static-Matched (DNS-M) and dual-noise-
dynamic-Matched (DND-M) to rule out potential confusion.

Figure S3 shows the results of the pilot study conducted with four
observers (3: authors and 1: naive observer). These results indicate
that the simulated defocus blur, generated using the model [Watson
and Yellott 2012], blurs the textures more than the actual condition.
Note that the rescaling parameters shown in Fig. S2, are above 1.
Consequently, the observers adjusted the test contrast to a lower
level than the reference contrast as the masking from the back-
ground textures diminish in the test stimuli.

Reference contrast: 0.2 (N=4) Reference contrast: 0.3 (N=4)

Matched test contrast

Matched test contrast
o

o

DNS-W  DND-W DNS-M  DND-M
Condition

DNS-W  DND-W DNS-M  DND-M
Condition

Fig. S3. Pilot study of Experiment 1. The test contrasts of four conditions
(light orange: DNS-W, light purple: DND-W, orange: DNS-M, and purple:
DND-M) are matched with four observers (black dots) and the 95% confi-
dence interval is provided as errorbar.

Pupil diameter measurements. For DNS and DND conditions, which
incorporated defocus blur to provide the test stimuli, we used the
pupil diameter obtained through defocus blur matching. This ap-
proach was necessary because our testbed lacked sufficient space
to place an eye tracker, and we aimed to maintain the size of the
defocus blur consistently throughout the experiment. In practice,
however, even with the same luminance level of stimuli presented,
the eye’s pupil diameter fluctuates over time, and measurements
are often affected by eye blinking, which let the interactive defocus
blur rendering challenging.

In Fig. S4, we present the pupil diameter data expanded with
measurements from a portion of observers. An eye tracker from
Pupil Labs was used to record the pupil diameter while observers
were exposed to the stimuli employed in defocus blur matching cali-
bration. The pupil diameter of the observer’s right eye was recorded
for a duration of one minute, which is sufficiently long to allow the
pupil to adapt to the luminance level. Portions of the data corrupted
by eye blinking were excluded to ensure data accuracy. A reference
scale bar was placed directly beneath the observer’s eye to scale
the recorded pupil diameter to physical size, and captured simulta-
neously. The measured pupil diameter showed a large per-subject
variation, and the discrepancy with the pupil diameter inversely
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matched with the appearance supports the necessity of the defocus
blur matching task preceding Experiment 1.

Pupil models [9/17: measured]
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Fig. S4. Pupil diameter profiles. We measured the pupil diameter of 9
out of 17 observers who participated in the defocus blur-matching calibra-
tion and they are sorted by the estimated size of pupil dimaeter following
Fig. 4. The error bars represent the standard deviation of the measurements
(yellow) and the standard deviation of the estimated values obtained from
the calibration (red).

S5 Individual bias in contrast matching

In the results of Experiment 1, we found that some naive observers
consistently matched towards higher test contrast, even under SP
conditions. This bias was often one-sided, as shown in Fig. S5. This
outcome was unexpected, as we conducted contrast matching train-
ing, and the results of the training, shown in Fig. S1, did not indicate
any bias.

Contrast matching resu
T T T

Its in SP conditions
.

0.4

0.35 0.1

03 0.08

0.25 0.06

L1 error

0.2

Measured test contrast

0.02

0.15 0
s s $ D> D> D> D> A A > > > A D>
& FFEEFE @ EEEE
F & & & K S & S E S
DI S S S S o
& & & & F & F & F &

Fig. S5. Per-individual bias in contrast matching The plot presents the
matched test contrast in SP conditions in two different reference contrast
levels (Car=0.2 (light blue), and 0.3 (blue)) and the L1 error (orange) between
the matched test contrast and the reference contrast sorted per individual
observers. Observers were anonymized but categorized into two groups
(blue: author, and black: external observer).

S6 Data analysis

In both Experiments 1 and 2, each data point was calculated as the
median of the log-contrast values across ten trials for each observer
in each condition. Using the median minimizes the influence of
outliers or extreme values, which can occur due to variability in
observer performance or environmental factors during the experi-
ment. The medians from individual observers were then averaged
across all participants to compute the final data points for each con-
dition. All further analysis is then performed on either the averaged
data across the sample or the individual observers’ median data. All
analysis was also performed in log contrast units.

In the following sections, we present some additional statistical
analyses with the data from Experiment 1 to determine the signifi-
cance of the background discounting effect in AR.

S6.1 Statistical significance - Experiment 1

In the paper Sec. 3.1, we describe the statistical analyses conducted
to test the background discounting hypothesis. The full t-test results
are shown in Table S4, including both p-values and Cohen’s effect
sizes. The results indicate that the contrasts in the dual-flat (DF),
dual-noise-static (DNS), and dual-noise-dynamic (DND) condi-
tions were not significantly different from the physical contrast of
the stimulus. However, the dual-noise-pinhole (DNP) condition
showed a statistically significant difference, highlighting the critical
role of simulated blur in achieving contrast matching in AR.

Table S4. Statistical comparison in Experiment 1 The table reports the
p-values (p) and Cohen’s d (d).

Comparison Car=0.2 Car=0.3

DF vs. Car p =0.904,d =0.031 p=0.215d =0.324
DNS vs. Car p =0.106, d =0.431 p=0.122, d =0.410
DND vs. Car p=0.925d =0.024 p =0.665,d =0.110
DNP vs. Car p <0.001,d =1.567 p <0.001,d =1.331

S6.2  Power analysis - Experiment 1

We conducted a power analysis to evaluate the sufficiency of our
sample size to detect effects with 80% power at a significance level
of @ = 0.05, using one-tailed tests. For large effect sizes (d > 0.8, e.g.,
d = 1.567 in condition DNP for cpr = 0.2), the current sample size
of n = 16 was more than adequate, requiring as few as 6 participants.
For moderate effect sizes (d = 0.5, e.g., d = 0.431 in condition DNS
for coR = 0.2), a sample size of 40~ 50 observers would be necessary
to achieve sufficient power. For small effect sizes (d < 0.2), the
required sample would exceed 500 observers, making detection of
such effects impractical within the constraints of the current study.
For our purpose, the study design was appropriately powered to
detect large effects.

S7  Supra-threshold contrast models

Section 4 in our paper presented the two notable supra-threshold
models from the literature; the additive (Kulikowski) and the mul-
tiplicative (Peli) contrast models. In addition to these, we tested
our dataset and those from the literature on a few other models as

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.
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Table S5. Post-hoc sample size estimation for Experiment 1 The table
reports the estimated sample size (n) for the observed effect sizes in Table S4.

Comparison Car=0.2 Car=0.3
DF vs. Car n=238,170 n=177
DNS vs. Car n =45 n =49
DND vs. Car n=13,629 n =651
DNP vs. Car n==6 n=7

well. The supra-threshold contrast response is often characterized
as a non-linear contrast transducer function [Foley and Legge 1981;
Wilson 1980]. For a specified test and reference stimulus, where the
contrast is perceptually matched, the responses of the transducer
functions can be assumed to be equal and presented as:

Ytest Yref

Ctest Cref

Kest ( T ) = kref( = ) p (S 9)
Ltest Lref

where k and y are the model’s gain control (multiplier and exponent
respectively) parameters. The equation can be simplified to predict
the test contrast as a function of the known variables:
_ Cref v
Ctest = ltest| K — | -
Lref

(S10)

tref and tiest are the threshold contrast of the reference and test
stimuli respectively, and c.f is the contrast of the reference stimulus
to be matched.

Another model of supra-threshold contrast matching was pro-
posed by Georgeson [1991], which is a modification on Kulikowski’s
model. While Kulikowski’s model is a simple additive model of the
threshold contrasts, Georgesons’s model stipulates that for patterns
where the threshold contrast is disproportionately lower due to
limiting optical factors, neural noise, etc. the perception at supra-
threshold levels is not affected as much. A simple additive model
such as Kulikowski’s, would underestimate the perceived contrast
of such patterns. Georgeson proposed a non-linear model where
the perceived contrast is boosted when the difference between the
thresholds of the test and reference contrast is too high and call it
the “overconstancy model”. In this model, the response to a specified
test contrast can be presented as:

Ctest — It t)m
es’ es
_— (S11)

Rtest = (
Cnorm — ftest

where cporm is the contrast at which the response of the mechanism

saturates, and m is the exponent of the transducer. To predict the

contrast value matched to a given reference contrast value, the

contrast overconstancy model can be rearranged as follows:

— q

Cref ~ Fref fref ) + ltest- (S12)
Cnorm ~— fref

q is the combined exponent parameter for both the test and reference
contrasts, and can be optimized along with cnorm-

More recently, the model from Ashraf and Mantiuk [2024] evalu-
ated existing models—specifically, the additive model by Kulikowski
[1976] and the multiplicative model by Peli [1990]—and identified
their limitations in accurately predicting contrast matching over a
broad luminance range for the HDR dataset in ?. To address these

Ctest = (Cnorm — ttest)(
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shortcomings, they proposed a hybrid model that integrates both
additive and multiplicative components. The model accounts for
threshold ratios and differences, optimizing its parameters through
regression analysis. The model is summarized as follows:

Ctest = 8(r" ) (crep)¥ + a(At), (S13a)

8(r') = 8mrt + 65, (S13b)

a(At) = amAt + aj, (S13¢)

pto= Dref (S13d)
Ttest

At = tref — trest (S13e)

where y, m, 8i, &m, and a; are the model parameters. y accounts for
the non-linearity between the matched contrasts. The §(-) function
represents a scaling factor for the reference contrast, dependent
on the threshold ratio (r! ) with &, and §; as the slopes and the
intercepts of this linear relationship. Similarly, the a(-) adjusts the
contribution of the threshold difference (At) with its linear depen-
dence on ay,, and a;, which are respectively the slope and intercept
of this adjustment.

S7.1 Validation with other datasets

Sec. 4.2 in the paper provides details of the training method used
to validate the contrast matching models. This validation is based
on the dataset from our study (Experiment 2) as well as additional
datasets from the literature. Table S6 provides the dataset used in
supra-threshold contrast modeling. From the reported dimensions of
the stimuli used in each of the studies, it can be seen that the datasets
encompass a wide range of stimuli and experimental conditions. This
was done to evaluate the models’ generalizability across different
supra-threshold contrast perception scenarios.

S8 Additional details
S8.1 Experimental setup

Fresnel

' lens_nd
Kgﬂl] ‘_|

U

Beam
splitters

LI

—
Projector Diffuser LCD

Fig. S6. Detailed schematic of the experimental setup.

The dual-layer haploscope, as shown in Fig. S6, is constructed
using a stack comprising a projector, diffusers, a Fresnel lens, and
an LCD to deliver dual-layer HDR images to individual eyes. The
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Table S6. Summary of datasets used in supra-threshold contrast modeling. The table includes experimental stimuli, input dimensions, and matching

axes (Y: Luminance, SF: Spatial Frequency, and C: Color).

Dataset Stimulus (Aperture) Dimensions Protocol Matching Axes No. of data points
[?] Grating (Gaussian) Y, SF, C Matching Y 505

[Georgeson and Sullivan 1975]  Grating (Rectangular) Y, SF Matching Y, SF 82

[Kulikowski 1976] Grating (Rectangular) Y Matching Y 46

[Hess 1990] Grating (Rectangular) Y, SF Matching Y 72

AR matching (ours) Grating (Gaussian) Y, SF, C Matching Y 32

Valley

Fig. S7. Assets used in Experiment 3. Mushroom: CC BY-SA 4.0, provided
by serlo.org. Coral: CC BY-SA 2.0, sourced from Flickr and was captured by
Matt Kieffer. Valley: CC BY-SA 3.0, sourced from Wikimedia Commons, and
attributed to Tobi 87. Spider: public domain under the CC0 1.0, Universal
license and was obtained from Stockvault.

Fresnel lens (Comar Optics) is positioned at the center of the display
stack to efficiently converge the backlight toward the viewing zone,
maximizing light usage. It is sandwiched with two diffusers (a prod-
uct of Luminit) having narrow diffusing angles (5, and 10 degrees,
respectively). The alignment of the overall display layers is per-
formed prior to the experiment, and the 3D geometric calibration is
performed per individual to compensate the layer image alignment
due to the individual difference of the interpupilary distance.

$8.2  Stimuli used in Experiment 3

Fig. S7 presents four images used for the Experiment 3. These are
the images that with most uniform histograms in terms of mapped
luminance values in the DIV2K dataset [Agustsson and Timofte
2017].

S8.3 Additional results - Experiment 3

Per-image results of Experiment 3. We present additional results of
contrast matching with complex images in Fig. S8, processed on a
per-image basis. Although there are slight variations in measure-
ments between different images, our image-independent contrast
matching model predicts the individual measured values with good
accuracy.

Validation with different distance types and contrast scaling opera-
tors. Equation 12 uses logarithmic scaling to reflect the non-linear
perception of contrast, and applies the L1 distance to compute the

Table S7. Validation RMSE with different distance types and scaling
operations. The lowest RMSE is bolded.

Scaling Type / Distance L1 Lp(p=15) L2

log 0.142 0.208 0.252
linear 0.606 0.622 0.632
sqrt 0.468 0.482 0.491

difference between the test and reference displays. Table S7 presents
the validation RMSE for different combinations of distance types
(L1, Lp (p = 1.5), and L2) and contrast scaling methods (log, linear,
and sqrt). Lp (p = 1.5) refers to the Minkowski distance of order 1.5.
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