
Video Content and Structure Description Based on
Keyframes, Clusters and Storyboards

Marc Junyent∗, Pablo Beltran∗, Miquel Farré∗, Jordi Pont-Tuset∗, Alexandre Chapiro∗†, Aljoscha Smolic∗
∗Disney Research Zürich, †ETH Zürich

Abstract—In this paper we present a novel system to extract
keyframes, shot clusters and structural storyboards for video
content description, which can be used for a variety of sum-
marization, visualization, classification, indexing and retrieval
applications. The system automatically selects an appealing set
of keyframes and creates meaningful clusters of shots. It further
identifies sections that appear recurrently, which are called
anchors, and typically divide television shows into different parts.
This information about anchors can then be used to browse video
content in a new fashion. Finally, our system creates a new type
of interactive storyboard suitable to visualize and analyze the
structure of the video in a novel way.

I. INTRODUCTION

The offer of audiovisual media has increased significantly
over the last years, presenting a plethora of new content as
well as numerous ways to consume it. The relation between
shows and viewers is stronger thanks to the interaction through
new channels such as social networks, which motivates pro-
fessionals in the media industry to post supplementary content
on these networks to engage their audiences.

The growing amount of online content and the imme-
diateness required by viewers, however, poses a challenge
for professionals providing good and complete supplementary
content. As attention spans are getting shorter and users are
flooded with a variety of content, the produced material needs
to be brief and appealing to succeed.

Video metadata plays a key role in meeting these criteria,
as it helps professionals and computer systems in finding,
creating, and promoting the right content as fast as possible.
As a consequence, having video content annotated by as
much and as good metadata as possible is becoming a major
competitive advantage in the media industry. In particular,
improvements in identifying specific clips and sections of
a show and highlighting content e.g. through selection of
visually pleasant keyframes, can make the difference between
the content being extensively shared and consumed, or simply
ignored and lost.

In this paper we present a novel system that contributes to
the mentioned challenges in three different ways: (i) providing
an appealing set of keyframes, (ii) providing meaningful
clusters of shots called video clips, and (iii) detecting the
anchoring blocks that divide the video under analysis into
different sections, such as the jury discussion in a talent show,
the anchorman in news, or the conversations in a morning
television show before changing topics.

Shot
Segmentation Clustering

Keyframe
Selection

Asset

Structural
Storyboard

Shots

Keyframes

Video Clips

Anchor Points

Fig. 1. This figure shows the pipeline of our method: after an initial shot
segmentation, we perform keyframe selection and cluster the segmented
shots to obtain video clips and anchor blocks. Finally all the information is
organized in a structural storyboard where the user can visualize keyframes,
clips and anchor blocks, and also refine the initial results.

The mentioned anchoring blocks can be used to segment a
show into sections and distribute it as a set of clips, which
also enables new playback opportunities, e.g. jumping from
block to block. Furthermore, our structural storyboard tool
organizes keyframes in a novel visualization format that also
allows human interaction to refine initial automatic results. The
full pipeline is shown in Figure 1 and each step is explained
in more detail in the following sections.

II. STATE OF THE ART

Video summarization has been a very active field of research
over recent years. According to Truong et al. [1] there are two
fundamental types of video summaries: static video summaries
and dynamic video skimming. Static video summaries are
composed of a set of keyframes extracted from the original
video, while dynamic video summaries are composed of a set
of shots and are produced taking into account the similarity
or relationships among video shots. Comprehensive surveys of
past video summarization results can be found in [1] and [2].

A number of keyframe extraction methods exist, with vary-
ing degrees of complexity. Some method select the first or last
frame of a shot as the keyframe [3], [4]. Qu et al. [5] transform
content into the HSV colorspace where shot segmentation can
be performed at a lessened cost. Keyframe selection can also
be treated as a clustering problem where the frames are points
in a space of features and the representative points are selected
as keyframes [6]. Peker et al. [7] use spectral clustering with
face detection: the keyframes are selected according to the
detected faces’ location and size while Chasanis et al. [8] use
a novel improved spectral clustering method. Some works take978-1-4673-7478-1/15/$31.00 c©2015 IEEE

a semantic approach to keyframe extraction. Liu et al. [9] seg-
ment video shots following consecutive motion patterns. The
turning points from accelerating to decelerating motions are
selected as keyframes. Kang and Hua [10] try to learn which
frames produce more representative matchings with a set of
descriptors previously selected by humans. Evangelopoulos
et al. [11] suggest that audiovisual saliency can be used to
select keyframes for a video summarization task. Recently,
Luo et al. [12] use several F-divergences to calculate frame by
frame distances and segment the video to obtain the keyframes
afterwards. For a general overview on keyframe extraction we
refer the reader to [13].

Several techniques have been studied to represent multiple
keyframes on screen while maximizing the compactness of
the representation, making a good coverage of the different
sections of the video and presenting them in an intuitive
way such as in comic-like layouts [14]. Space limitation can
also be overcome presenting the keyframes in an interactive
environment [15], [16] that allow the user to navigate across
a large set of keyframes and refine the ones to be shown
on screen through interactions. Barnes et al. [17] suggest a
summarization design inspired by medieval tapestries where
keyframes are melded into a continuous timeline that repre-
sents the content. Another approach is to match the number of
keyframes on screen to the available representation area [18]
by means of scalable storyboards. This approach has been
studied in detail in [19] for the particular case of handheld
devices.

Video decomposition in scenes can be classified in rule-
based approaches - which study the way a scene is structured
in a professional production to decompose the video in scenes
[20] - and graph-based methods where shots are arranged in
a graph representation and then clustered by partitioning the
graph. The Shot Transition Graph [21] is one of the most used
models in this category. In [22] normalized cuts is employed
to optimally obtain clusters and a shortest path algorithm is
used to detect the scenes. Sidiropoulos et al. [23] extended the
Shot Transition Graph using multimodal low-level and high-
level features. Brandi et al. [24] presents a scene detection
algorithm that combines local image descriptors and temporal
clustering techniques.

Our paper extends previous work as follows:
• We extract suitable keyframes based on face detection,

text detection and frame quality. Available text and face
detectors are extended and optimized, and a new notion
of key faces is introduced.

• We provide a method for meaningful clustering of shots
(could also be used to automatize the backbone detection
in [16]). It further identifies anchoring sections in shows.
An anchoring section or block can be understood as a
section of the show that recursively appears to introduce
or discuss about the next or previous section.

• Finally, we provide a new storyboard representation
which allows better visualization of the structure of the
video compared to other approaches. The storyboard can
also be used to provide feedback to the anchoring section

detection and clip generation algorithm.
In the following sections we will outline each step of our
method’s pipeline and finally present our experimental results.

III. SHOT SEGMENTATION

Video is segmented in shots using rank-tracing [3], calcu-
lating the histogram of the frames in the HSV color space.
Results are enhanced with [25] to detect dissolve transitions
between shots, as well as a flash detector to avoid false
positives. Frames belonging to a dissolve transition are not
considered as candidates for keyframe selection and are not
used in any other part of the algorithm.

We denote S as the set of shots, S = {S1, S2, · · · , Sn},
of the video asset. Each shot Si contains a set of mi valid
frames.

IV. KEYFRAME SELECTION

In order to select nice-looking keyframes we rely on a per-
frame score which takes into account text on screen, several
face features, and quality of the image. Details related to
each feature, its temporal filtering, and final combination are
described below.

A. Text detection and tracking
We detect text blobs calculating the Stroke Width Transform

(SWT), as described by Epshtein et al. [26] over all frames.
For each shot Si we obtain a set of text blobs Bi = {bjk :
1 ≤ j ≤ mi, k ≥ 0}.

In order to track the text blobs across the shot, we begin by
improving the temporal coherence of the detections obtained
from SWT. To do this, we group text blobs in families. Each
family T contains the same text blob across the frames of
the shot. By definition, a blob cannot be part of two families
and a family cannot have two blobs on the same frame. The
rule to cluster text blobs in families is the following: if bjk is
part of a family T , any blob bj′k′ such that |j − j′| ≤ d
and having a similar spatial position and size as bjk is
considered to belong to the family T . With d = 1 we would be
considering contiguous blobs in time but to overcome possible
misdetections in isolated frames we experimentally set d = 6
for videos with 24 frames per second (fps).

We define the length of a family length(T) as the distance
between the first and the last blobs’ frames plus one. The
families with length less than a second and the families where
the actual detected blobs to length ratio is small are considered
false positives and are discarded. Once the false positives have
been discarded, families that are close in time and spatial
position are merged.

Finally, we ensure the temporal continuity of the text
blobs within a family. For this, proxy blobs are generated in
intermediate frames where a text blob for the given family was
not detected. To generate these proxies, we first determine if
the text represented by the family is static or moving. If the
text is static, the proxy blobs generated are the union of the
previous text blobs of the family and if the text is moving, the
proxy blobs are obtained by interpolating between the previous
and the next existing blobs in the family.

B. Face detection and analysis

Following a similar approach as the previous section, we
detect the faces on each frame and track them within a shot.
Faces fjk are grouped in families Fi at shot level. For each
detected face, its position, size, angle with respect to the
camera and the state of the mouth and the eyes is extracted
using the methods described by Ruf et al. [27].

We combine this information to determine which faces are
important in the shot. This feature is key in the content targeted
by this work, e.g. in a night show, the focus on the presenter
rather than on the faces of audience members is preferred.

To determine key faces, we give a score to each family and
then search for outliers in terms of behavior. To obtain a final
score per family, the first step is to obtain the following four
scores for each face fjk found in a frame:
• A quality or flattery, Q(fjk), score based on the rotation

of the head, the state of the eyes and mouth and the
reliability of that information.

• P (fjk) based on the position of the face within the frame,
giving more weight to centered positions.

• D(fjk) based on the mean distance to other faces in the
same frame.

• M(fjk) based on the size of the face relative to the size
of the other faces in the same frame.

All these scores are normalized between 0 and 1 where 1
represents the best score. We obtain the same scores at family
level as the mean of the scores of the faces that belong to the
family. The total score of a family is calculated as:

S(Fi) = w1Q(Fi) + w2D(Fi) + w3M(Fi)

+ w4

(
P (Fi) +

1

#Fi

∑
f∈Fi

(P (f)− P (Fi))2
)

+ w5

(
length(Fi)

length(Shot)
− #Fi

length(Fi)

) (1)

Apart from considering the suitability of the detected posi-
tion, the position variance also influences the score as faces
with big movement are likely to be important. The last factor
gives more importance to faces that appear more during the
shot but penalizes long families with few actual detected faces
to overcome possible false positives. wi weights change the
relative importance of the different scores. S(Fi) is always
kept normalized in our experiments. After some experimenta-
tion we set w1 = 0.20, w2 = 0.35, w3 = 0.25, w4 = 0.05
and w5 = 0.15, which work well with different genres, from
movies to news programs, or talk shows.

Once we have calculated the scores we decide which fami-
lies Fi are categorized as important. Based on observations in
TV content and the kind of shots used in it, we assume that
all families are important if the number of families within the
shot is small (three families or less) and have similar scores. If
the number of families is bigger than 3, we select as important
families the ones with outlying high scores. As all our scores
are normalized, we consider as outliers those families with
scores above or below the mean by 0.1 points.

Fig. 2. Text and key face detection from publicly available content [28], [29].
Blue bounding boxes point to key faces, white bounding boxes to other faces
and red boxes to text.

C. Keyframe extraction

For each frame j, 1 ≤ j ≤ mi in the shot Si we calculate
a text score St,j , a faces score Sf,j and a quality score Se,j .

The text score is calculated as:

St,j =

∑
k≥0 Area(bjk)l(bjk)g(bjk)

max1≤l≤mi

(∑
k≥0 Area(blk)l(blk)g(blk)

) (2)

l(b) and g(b) are factors that depend on the start sb and end
eb of the family the text blob b belongs to.

l(b) = exp

(j−sb
eb−sb+1 − 0.5

2.0 ∗ 0.52

)
(3)

g(b) =


eb−sb+1

t1
eb − sb + 1 ≤ t1

0.5 eb − sb + 1 > t2 ∗ length(Shot)
1.0 otherwise

(4)

The factor g penalizes overly short or long families of
blobs. Families with a short duration are probably unimportant
and might even be a false detection, while the families that
continue for most of the duration of a given shot should not
affect the selection of the keyframe. We set t1 = 48, 2 seconds
at 24 fps, and t2 = 0.85. The factor l is an exponential that
decreases the importance of a text blob when it is near the
beginning or the end of its life to avoid possible fades or
blurriness.

The face score can be calculated in two possible ways,
depending on whether important families of faces have been
found or not. If important families of faces are present, we
define Ij as the set of faces in frame fj that belong to an
important face family. Then:

Sf,j =
(ri2 + 1

4) |Ij |
max

1≤k≤mi

|Ik|
+

(34 −
ri
2)
∑
fjk∈Ij Q(fjk)

max
1≤l≤mi

∑
flk∈Il Q(flk)

(5)

where
r =

max1≤k≤mi(|Ij |)
|F |

and Q(f) is the flattery score as defined in Section IV-B. The
first term gives importance to the frames that have most of the
important faces of the shot, the second term tries to maximize
the flattery score of these faces. The r parameter balances
between these two terms prioritizing getting all the important
faces in one frame if possible or the most flattering of them
if it is not.

If no face family has been detected as important the face
score is simply calculated as:

Sf,j =

∑
k score(fjk)

maxj
∑
k score(fjk)

0.3 +
|fj |

maxj |fj |
0.7 (6)

We again prioritize frames with more faces. The 0.3 and
0.7 constants were chosen experimentally.

Finally, we compute an overall image quality score, which
is inspired by recent research on automated image aesthetics
[30], where sharpness is identified as the most crucial param-
eter of image quality. In order to include this in our keyframe
extractor, we compute a simple measure of overall image
sharpness. For each frame fj a Laplacian filter is applied to its
grayscale version, producing a new frame. An energy score, ej ,
is calculated as the mean of the squared values of the resulting
pixels. Finally the quality score of a frame is calculated as:

Se,j =
ej

max1≤k≤mi
(ek)

The final score S(fj) for a frame is calculated as:

S(fj) = wf · Sf,j + wt · St,j + we · Se,j (7)

Where wf , wt, we are weights that change the relative
importance of the different scores and can be adapted to fit
the goals of the user. In our experiments we set wf = 2.0,
wt = 1.0 and we = 0.5 as we focus on videos with people
as protagonists. These values proved to work well in a wide
variety of media.

V. CLUSTERING

The clustering part of our system groups the shots identified
in section III in segments that can be classified as short clips
or anchor sections of the show. In order to detect anchoring
sections we first analyze the color similarity of all the shots in
the video and in a second step we apply a temporal clustering.
Note that introducing temporal information in the first step as
done in previous works [22] would not allows us to group shots
belonging to the anchoring part of a show when substantially
separate in time.

A. Shot similarity clustering

We select multiple equally k spaced frames in each shot
and use them to create a measure of similarity between shots.
We divide each k frame in a grid of m × n rectangles and
compute their normalized histograms. The distance between
two frames is the mean of the Euclidean distances of their
histograms. Let f1, . . . , fk be the k selected frames from shot
s, f ′1, . . . , f

′
k the selected frames from shot s′ and Sk the group

of permutations of k elements. Then the distance between s
and s′ is calculated as:

dist(s, s′) = min
∀σ∈Sk

k∑
i=1

dist(fi, f
′
σ(i)) (8)

The distance distribution is clustered using DBSCAN
[31] which is very robust against noise and allow us to
find the related shots only requiring two parameters: the
minimum number of shots to be considered a cluster and
the maximum reachable distance between them. Hence,
opposed to other clustering algorithms, DBSCAN allows us
to consider different number of clusters from one video to
another, making it very suitable for our task.

We set the minimum number of shots per cluster to one
as some of the shots may appear only once and we define
a maximum reachable distance tailored to each video: we
iteratively decrease the maximum reachable distance starting
from one until only a few temporally consecutive shots are
grouped together. By doing this, we assume a correct shot
segmentation because two shots would either have different
color content or not be consecutive.

B. Temporal clustering

After the shot similarity clustering we find which of these
clusters belong to the same sequence. Similarly to [22] we
use the temporal relationship between shots to create a graph
with the similarity clusters as nodes and temporal transitions
as edges, i.e. a pair of nodes would have an edge between
them if one has a shot that is adjacent in time of the shot
from the other. After that, we search for closely related shot
clusters looking at the number of edges between them.

Unlike the algorithm by Wah et al. [22], we do not use the
Dijkstra algorithm to find the scenes as our graph would prob-
ably be cyclical. An example consists of news or discussion
shows, which are commonly opened and ended with the same
anchor. The first and last shot belong to the same cluster and
the Dijkstra shortest path algorithm would consider the entire
video as only one scene. In order to prevent this, we apply the
HCS [32] recursively.

The HCS Clustering algorithm tries to find the more
connected vertices regarding their connectivity. In order to
do this it recursively applies the minimum cut to a connected
graph or subgraphs until the minimum cut value, i.e. the
number of edges of the mincut in an undirected graph, is
greater than the half the number of nodes. As we want
to minimize the number of clusters, we use the Karger’s
algorithm [33] to try to find the minimum cut that splits the
graph in disjoint sets of the similar number of vertices. The
method has some similarities with the method in [22] as they
employ the second smallest eigenvalue to partition the graph
representing the video decomposition, equivalent to minimize
the Ratio cut from a graph A:

min RatioCut =
cut(Ai, Ai)

|Ai||Ai|
(9)

While we look for:

mincut(Ai, Ai) such that min
1

|Ai||Ai|
(10)

where Ai is a subset of nodes and its vertices from A, |Ai|
its number of vertices and Ai the subset formed by A − Ai.
We perform HCS clustering iterations contracting the edges
for which both vertices fall in the same cluster and we iterate
again until there are no more cluster changes.

C. Detection of anchoring sections

After the temporal clustering we obtained groups of shots
that are connected between them and we classify them into (i)
those that are temporally adjacent, and so can be interpreted
as video clips, and (ii) non-adjacent blocks of shots whose
content is similar. We look for anchoring sections in the latter.

In order to detect which one of the clusters is the anchor
we take into account two parameters: (i) their time on screen,
i.e. the aggregated time of all their appearances, and (ii) their
range, that is, the amount of time between their first and
last appearance. Combining these two measures allows us
to discard credit screen shots that may only appear at the
beginning and at the end, as well as clusters with unique but
long occurrences.

VI. STORYBOARD GENERATION AND INTERACTION

For a given video asset, commonly several shots from
the same camera are present. These shots share the same
spatial location and usually the same action or characters. For
example, in an interview is common to find an alternation
between two kinds of shots: one focusing on the interviewer
and one on the interviewed.

Unlike existing storyboards that try to present information in
a spatially compact manner, our method places the keyframes
that represent each shot chronologically from left to right and
adds a second dimension vertically, where shots categorized as
similar in Section V-A are placed in the same row. This gives
the viewer a sense of the structure of the video. Furthermore,
we add a colored label on the corner of each keyframe in
the storyboard. Keyframes share the color of its label if they
belong to the same clip or anchoring.

If necessary, users can correct the results of the similarity
clustering moving the keyframes to a more appropriate row.
After the user interaction, the temporal clustering described in
Section V-B is computed again. An example of the storyboard
and the result of an interaction on it is presented in Figure 4.

VII. RESULTS

In our first set of experiments, we performed a user study
which compared the visual appeal of our keyframes and the
keyframes provided by the methods described in [8] and
[12]. The study consisted in a standard three-alternate forced-
choice procedure. Participants were instructed to select the

keyframe that looked more enjoyable and appropriate to be
posted online. Fifty volunteers participated, undertaking 20
trials each. To obtain comparable keyframes from the three
methods we initially divided videos containing news and
shows in shots and fed each individual shot to the different
keyframe extraction methods.

The preference rates for this experiment are shown in
Figure 3. We performed a two sample t-test between the
preference rates averaged out over all responses provided
by each participant between our method and [8] as well as
between our method and [12]. We found that our method was
selected significantly more often than both competing methods
(σ < 0.05).

In our second set of experiments, we compared our an-
choring block detection results against a manually annotated
ground truth of anchoring blocks in multiple test sequences.
Our approach performs very well with highly structured video
such as news, morning TV and talent shows. Pushing the
limits of the algorithm, we experimented on a movie [34],
which does not have a clear anchoring structure like TV shows.
We refined the initial results automatically computed with our
system, by interactively moving five shots in the storyboard
to a more appropriate position, which improved the results
significantly. Detailed results are presented in Table I together
with the storyboard of [34] in Figure 4.

0 0.1 0.2 0.3 0.4

Luo et al. [12]

Chasanis et al. [8]

Our approach

0.28

0.34

0.38

Fig. 3. Keyframe preference rates, user experiment results

TABLE I
ANCHORING BLOCKS DETECTION COMPARED TO THE GROUND TRUTH

Video Precision Recall Accuracy
News 0.99 0.88 0.93
Morning TV show 0.94 0.92 0.96
Talent show 0.83 0.48 0.85
Short movie [34] 0.43 0.34 0.71
Short movie [34] after 5 interactions 0.62 0.71 0.81

VIII. CONCLUSIONS

We presented a novel system and components for video
content and structure description, which enables new forms
of visualization and interaction with the data, as crucial in
the era of the social networks. The new keyframe selection
algorithm outperforms state of the art approaches in terms of
visual appeal. The introduced clustering algorithm computes
video clips and detects anchoring blocks in shows, which
reveal structure and enable advanced playback such as content
aware video skipping. Furthermore, results of the clustering
are organized to a novel storyboard that visually preserves the
structure of the video.

Fig. 4. In this figure, the storyboard generated for the short film “Tears of Steel” [34] is presented. Please zoom into the figure in order to see the details of
our storyboard, such as the color labels of the shots. For example the shots labeled in pink can be understood as the anchor block of the movie. Inside the
blue box we present a short clip of the movie where the similarity clustering was wrong. In the green box the user moved the last shot of the clip (in red) to
a more appropriate row and as a consequence the temporal clustering algorithm corrected the labelling.

REFERENCES

[1] Ba Tu Truong and Svetha Venkatesh, “Video abstraction: A systematic
review and classification,” TOMCCAP, vol. 3, no. 1, pp. 3, 2007.

[2] Arthur G. Money and Harry Agius, “Video summarisation: A conceptual
framework and survey of the state of the art,” J. Vis. Comun. Image
Represent., vol. 19, no. 2, pp. 121–143, Feb. 2008.

[3] W. Abd-Almageed, “Online, simultaneous shot boundary detection and
key frame extraction for sports videos using rank tracing,” in ICIP 2008,
Oct 2008, pp. 3200–3203.

[4] Dr Shobha G. Azra Nasreen, “Key frame extraction using edge change
ratio for shot segmentation,” in IJARCE Vol. 2, Issue 11, November
2013, pp. 4421–4423. 2013.

[5] Zhong Qu, Lidan Lin, Tengfei Gao, and Yongkun Wang, “An improved
keyframe extraction method based on hsv colour space,” Journal of
Software, vol. 8, no. 7, pp. 1751–1758, 2013.

[6] M. Furini, F. Geraci, M. Montangero, and M. Pellegrini, “Stimo: Still
and moving video storyboard for the web scenario,” Multimedia Tools
and Applications, vol. 46, no. 1, pp. 47–69, 2010.

[7] Kadir A Peker and Faisal I Bashir, “Content-based video summarization
using spectral clustering,” in International Workshop on Very Low-
Bitrate Video, Sardinia, Italy, 2005.

[8] Vasileios Chasanis, Aristidis Likas, and Nikolas P. Galatsanos, “Scene
detection in videos using shot clustering and sequence alignment.,” IEEE
Transactions on Multimedia, vol. 11, no. 1, pp. 89–100, 2009.

[9] Tianming Liu, Hong-Jiang Zhang, and Feihu Qi, “A novel video key-
frame-extraction algorithm based on perceived motion energy model,”
Circuits and Systems for Video Technology, IEEE Transactions on, vol.
13, no. 10, pp. 1006–1013, Oct 2003.

[10] Hong-Wen Kang and Xian-Sheng Hua, “To learn representativeness of
video frames,” in Proceedings of the 13th annual ACM international
conference on Multimedia. ACM, 2005, pp. 423–426.

[11] G. Evangelopoulos, K. Rapantzikos, A. Potamianos, P. Maragos, A. Zlat-
intsi, and Y. Avrithis, “Movie summarization based on audiovisual
saliency detection,” in ICIP. IEEE, 2008, pp. 2528–2531.

[12] X. Luo, Q. Xu, M. Sbert, and K. Schoeffmann, “F-divergences driven
video key frame extraction,” in ICME, 2014, pp. 1–6.

[13] C Sujatha and Uma Mudenagudi, “A study on keyframe extraction
methods for video summary,” in CICN, 2011.

[14] J. Calic, D. Gibson, and N. Campbell, “Efficient layout of comic-like
video summaries.,” IEEE Trans. Circuits Syst. Video Techn., vol. 17, no.
7, pp. 931–936, 2007.

[15] J. Lokoc, K. Schoeffmann, and M. Del Fabro, “Dynamic hierarchical
visualization of keyframes in endoscopic video,” in MMM 2015.

[16] Herv Goau, Jrme Thivre, Marie-Luce Viaud, and Denis Pellerin, “In-
teractive visualization tool with graphic table of video contents.,” in
ICME. 2007, pp. 807–810, IEEE.

[17] C. Barnes, D. Goldman, E. Shechtman, and A. Finkelstein, “Video
tapestries with continuous temporal zoom,” ACM Transactions on
Graphics, vol. 29, no. 3, Aug. 2010.

[18] L. Herranz and J. Martinez, “A framework for scalable summarization
of video.,” IEEE Trans. Circuits Syst. Video Techn., vol. 20, no. 9, pp.
1265–1270, 2010.

[19] L. Herranz and S. Jiang, “Scalable storyboards in handheld devices:
applications and evaluation metrics,” Multimedia Tools and Applications,
pp. 1–29, 2015.

[20] Cailiang Liu, Dong Wang, Jun Zhu, and Bo Zhang, “Learning a
contextual multi-thread model for movie/tv scene segmentation,” IEEE
Transactions on Multimedia, vol. 15, no. 4, pp. 884–897, 2013.

[21] M. M. Yeung, B.-L. Yeo, W. H. Wolf, and B. Liu, “Video browsing
using clustering and scene transitions on compressed sequences,” in
Multimedia Computing and Networking 1995, Mar. 1995.

[22] Chong-Wah Ngo, Yu-Fei Ma, and HongJiang Zhang, “Video summa-
rization and scene detection by graph modeling,” IEEE Trans. Circuits
Syst. Video Techn., vol. 15, no. 2, pp. 296–305, 2005.

[23] P. Sidiropoulos, V. Mezaris, I. Kompatsiaris, H. Meinedo, M. Bugalho,
and I. Trancoso, “Temporal video segmentation to scenes using high-
level audiovisual features.,” IEEE Trans. Circuits Syst. Video Techn.,
vol. 21, no. 8, pp. 1163–1177, 2011.

[24] L. Baraldi, C. Grana, and R. Cucchiara, “Scene segmentation using
temporal clustering for accessing and re-using broadcast video,” in IEEE
ICME 2015.

[25] C. Su, H.-Y.M. Liao, H. Tyan, K. Fan, and L. Chen, “A motion-tolerant
dissolve detection algorithm,” Multimedia, IEEE Transactions on, vol.
7, no. 6, pp. 1106–1113, Dec 2005.

[26] B. Epshtein, E. Ofek, and Y. Wexler, “Detecting text in natural scenes
with stroke width transform,” in CVPR, 2010, pp. 2963–2970.

[27] Tobias Ruf, Andreas Ernst, and Christian Küblbeck, “Face detection
with the sophisticated high-speed object recognition engine (shore),” in
Microelectronic Systems, pp. 243–252. Springer, 2011.

[28] G. Doin, “http://www.educacionprohibida.com,” .
[29] BBC Backstage and BBC RD, “RDTV episode 1,” 2009, Available at

http://ftp.kw.bbc.co.uk/backstage/rdtv.
[30] T. Aydin, A Smolic, and M. Gross, “Automated aesthetic analysis of

photographic images,” Visualization and Computer Graphics, IEEE
Transactions on, vol. PP, no. 99, pp. 1–1, 2014.

[31] Martin Ester, Hans peter Kriegel, Jrg S, and Xiaowei Xu, “A density-
based algorithm for discovering clusters in large spatial databases with
noise,” 1996, pp. 226–231, AAAI Press.

[32] E. Hartuv and R. Shamir, “A clustering algorithm based on graph
connectivity,” Information Processing Letters, 1999.

[33] David R. Karger, “Global min-cuts in rnc, and other ramifications of
a simple min-out algorithm,” in Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, Philadelphia, PA, USA, 1993, pp. 21–30.

[34] Blender Foundation, “Tears of steel,” http://mango.blender.org.

