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Fig. 1. Sample frames from the FaceExpressions-70k dataset. The images are sampled from expression transition videos in the MultiFace Dataset [Wuu et al.
2022]. A large-scale human study on Amazon Mechanical Turk uses the sampled image pairs to evaluate perceptual expression differences. Intra-expression
pairs from the same expression sequences have expression difference scores in the top right triangles. Inter-expression pairs, comparing across expressions, are
shown in the matrix in the bottom right. Black cells with white crosses indicate excluded inter-expression pairs to manage the scale of the study.

Facial expressions are key to human communication, conveying emotions
and intentions. Given the rising popularity of digital humans and avatars,
the ability to accurately represent facial expressions in real time has become
an important topic. However, quantifying perceived differences between
pairs of expressions is difficult, and no comprehensive subjective datasets
are available for testing. This work introduces a new dataset targeting this
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problem: FaceExpressions-70k. Obtained via crowdsourcing, our dataset
contains 70,500 subjective expression comparisons rated by over 1,000 study
participants1 We demonstrate the applicability of the dataset for training
perceptual expression difference models and guiding decisions on acceptable
latency and sampling rates for facial expressions when driving a face avatar.
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1 Introduction
Digital human renders are popular in applications like social media,
entertainment, and education [Nowak and Fox 2018]. Stimulated
by the advent of head-mounted displays, photorealistic face avatars
have been proposed as an avenue for immersive human interactions
[Lombardi et al. 2018, 2021]. Ensuring that these representations are
perceptually accurate and convey the intended non-verbal signals
is a critical task for these applications [Rekik et al. 2024].
During interaction, humans exchange a wealth of unspoken in-

formation with each other using their faces. One particularly salient
set of tools for this is facial expressions: the same sentence said
with a smile or frown might convey completely different meanings.
Although subtle in motion, they have a strong perceptual impact.

The accuracy of the expressions of an avatar is especially difficult
to quantify. The popular field of difference metrics largely focuses
on low-level features of images (e.g. contrast, spatial frequency,
color) or geometry (e.g. curvature), but these descriptors ignore the
unique meaning imparted by expressions. A dedicated expression
metric is desirable, but difficult to create due to a lack of appropriate
subjective data - there is no comprehensive dataset of perceived
expressions that can be used to train or test such a model.
In this work, we introduce FaceExpressions-70k, a large-scale

dataset to quantitatively evaluate expression accuracy. It includes
70,500 pairwise comparisons of facial expressions, rated by 1,021 par-
ticipants over more than 8,000 hours. The dataset spans eight human
faces and 61 distinct expressions, covering both inter-expression
(e.g., comparing a smile to a wink) and intra-expression pairs (e.g.,
the same expression at varying intensities). Compared to prior ef-
forts, FaceExpressions-70k is significantly larger and more diverse,
which makes it more suitable for key applications such as training
metrics or deep learning models (see Sec. 2.4).

FaceExpressions-70k was obtained and scaled using state-of-the-
art subjective study methodologies. Extensive piloting was used to
ensure the data was well-scaled, with an approximately uniform
distribution of activation units within expressions. Sixty-one unique
expressions were evaluated, each presented with five activation lev-
els on at least one of 8 unique base identities. To enable the collection
of such a large dataset, we employed remote collection via Amazon
Mechanical Turk (AMT) [Amazon 2025], using customized selection
criteria to ensure data quality. State-of-the-art techniques [Li et al.
2020] were employed to test subjective scores for consistency, per-
form statistical analyses, and interpret the results. We demonstrate
the value of FaceExpressions-70k via two applications. First, we
use our dataset to benchmark the performance of image difference
metrics in predicting the perceived distances between expression
pairs. We demonstrate that performance is significantly improved
by using FaceExpressions-70k to train the models, paving the way
for future dedicated expression distance metrics. Additionally, we
employ our dataset to drive decisions for acceptable latency and
sampling rates of facial expressions when driving an avatar.

2 Related Work

2.1 Datasets of Faces and Expressions
Several datasets that include facial expressions exist. The HUMBI
dataset [Yu et al. 2020] captured multi-view data of body and face

expressions of 772 unique subjects. However, the resolution of the
scans is insufficient to allow viewing subtle facial details. Similarly,
the FaceWarehouse dataset [Cao et al. 2014] offers 3D facial expres-
sion data of 150 subjects, but relies on low-resolution RGB-D sensors,
restricting geometric precision. Finally, the MultiFace dataset [Wuu
et al. 2022] provides synchronized recordings of 13 individuals per-
forming over 60 diverse facial expressions and head poses. Their
multi-camera system includes 2048×1334 resolution images, tracked
3D meshes, unwrapped textures, and metadata, which enables more
precision in the modeling of fine facial details for applications like
virtual reality and telepresence. Due to its high resolution, geomet-
ric accuracy, and expression diversity, we selected MultiFace as
the baseline dataset for this work, creating a comprehensive set of
subjective labels of expression similarity.

2.2 Representation Learning for Faces
Recent efforts have advanced facial behavior understanding by learn-
ing face-specific representations. Zheng et al. [2021] proposed FaRL,
a framework that learns transferable facial representations by com-
bining contrastive image-text pretraining with masked image mod-
eling. Ma et al. [2023] introduced MAE-Face, a unified approach for
facial affect analysis that leverages masked autoencoder pretraining
and multi-modal fusion. Building on face-specific learning, several
works further disentangle identity to enhance expression analysis.
Ning et al. [2024] proposed a framework that combines represen-
tation learning with identity-adversarial training to disentangle
identity information and improve facial expression analysis. Liu
et al. [2024] introduced NorFace, which enhances facial action unit
(AU) analysis and facial emotion recognition (FER) by normalizing
identity features to reduce subject bias. Zhang et al. [2021] proposed
a Deviation Learning Network, modeling expressions as deviations
from identity to learn a compact, identity-invariant embedding.

2.3 Perceptual Studies of Faces, Expression
Subjective data on faces has been leveraged to optimize digital hu-
man rendering quality. Wolski et al. [2022] quantified the visibility
of geometry distortions on untextured human faces. Although suffi-
cient geometric detail and quality is needed to perceive expressions,
this study only focused on neutral faces. FaceMap [Jiang et al. 2024]
created a saliency map of the face, focusing on the visibility of tex-
ture and geometry distortions. While localized saliency information
can correlate with expressivity, this was not part of the study.

Perceptual evaluations of expression have been conducted. Wall-
raven et al. [2008] studied the accuracy of animation techniques in
reproducing expressions. Zibrek et al. [2019] studied the impact of
photorealism for three expression types: friendly, unfriendly, and
sad, finding that more photorealistic imagery enhances expressive-
ness. Tessier et al. [2019] studied the realism of pain expressions in
avatars, concluding that the order of action unit activation impacts
the perceived realism of the expression. Treal et al. [2021] studied
the impact of body and postural movements on the empathic re-
sponse to expressions of pain, concluding that it has a significant
impact. While all these studies examine facial expressions, they
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Fig. 2. Frame sampling from the MultiFace dataset as the expression ‘E041 Mouth Nose Right’ transitions from ‘Peak’ to ‘Neutral.’ Red-circled numbers
indicate the sequence of steps in the sampling process. The frames in dotted-red boxes were the final images used in the FaceExpressions-70k dataset.

focus on specific aspects of the problem (animation accuracy, pho-
torealism, pain expressions), and as a consequence, are not suitable
for a general quantitative model of expression accuracy.

2.4 Metrics andQuantifying Expression Accuracy
Mean Squared Error (MSE) and Mean Absolute Error (MAE) are
commonly used in image processing tasks but lack perceptual align-
ment, focusing only on pixel differences. Structural Similarity Index
(SSIM) [Wang et al. 2004] improves upon this by considering lu-
minance, contrast, and structure. Learned Perceptual Image Patch
Similarity (LPIPS) [Zhang et al. 2018] is a neural network-based
metric that compares feature activations for perceptual similarity.
Both SSIM and LPIPS are widely used in tasks like image quality
assessment and image similarity due to their more substantial align-
ment with human perception. Recently, activations from pretrained
models [Chen et al. 2020; He et al. 2015; Radford et al. 2021] have
also been shown to be useful for various tasks involving human per-
ception. While these methods can present good accuracy for general
content, they are not tuned to facial expressions. As a result, their
performances at predicting the perceived differences of expression
changes are limited (see Sec. 4).

Specific to expressions, McDonnell et al. [2021] examine the per-
ception of facial action units (AUs) in virtual human models. They
examined 12 expressions, each at five activation levels for six digital
characters. Analyzing the data, the authors draw conclusions on
perceptual salience across facial regions, and study the influence of
factors like race and sex. Similarly, Cipiloglu Yildiz [2023] developed
a perceptual distance metric for 3D blendshape models using crowd-
sourced evaluations of 2,905 intra and inter-expression triplets, ob-
tained from a single blendshape model with five expressions, 173
raters, and metric learning techniques that incorporate saliency and
curvature. Both works focus on expressions but employ only virtual
characters animated via blendshapes. In contrast, our study employs
filmed captures of human subjects, thus avoiding the influence of
the rendering and animation methods on the result. Furthermore,
our dataset, comprising 70.5k intra- and inter-expression pairs from
eight human faces and 61 expressions, annotated by 1021 raters
over more than 8000 hours, is significantly more extensive, which
makes it suitable for fine-tuning general-purpose visual computing
algorithms, such as neural networks or metrics.

3 Development of FaceExpressions-70k

3.1 Content for FaceExpressions-70k dataset
We utilize the MultiFace dataset [Wuu et al. 2022] as the source of
the images used to run our study. This repository features a diverse
range of facial expressions, including distinct and highly prominent
expressions, as well as nuanced variations. Moreover, the controlled
imaging conditions in MultiFace ensured that our dataset provided
consistent and representative data for studying facial expression
differences, forming a robust basis for investigating perceptual vari-
ations and developing objective evaluation metrics.

For this study, we sample frames from eight of the thirteen iden-
tities in the MultiFace dataset to maintain a feasible study size. This
set was down-selected in a way that maintained as much demo-
graphic diversity as possible. See Appendix A.1 for an extended
discussion of the identity selection process. We focus exclusively
on front-facing camera captures, as this perspective minimizes pose
variability, enhances the prominence of facial features, and provides
a clear, uniform view, making the dataset particularly suitable for
analyzing perceptual nuances in expression differences.

3.2 Sampling MultiFace Dataset
Facial expressions are transitional and often involve complex dy-
namics; in this work, we chose frame-based analysis as it provides
more granular control, allowing us to examine different expressions
at varying levels of activation.

The MultiFace dataset provides video sequences capturing facial
expression transitions from peak intensity to neutrality. In a video,
many frames display imperceptible differences. To maintain a rea-
sonable size, we want to ensure that the images down-selected for
the study are reasonably perceptually spaced. Expression transi-
tions occur non-linearly, with peak and neutral expressions often
sustained at the beginning and end of each sequence. To ensure key
points in the transition are captured, we sampled one frame early
in the transition (e.g., frames 1–5), where the expression remained
at its peak intensity, and another near the end (e.g., frames 𝑛 − 5
to 𝑛), where the expression approached neutrality. Next, we ran
one iteration of QUEST procedure [Watson and Pelli 1983] with
50 pairwise comparisons (See Appendix A.2 for more details). to
identify another two frames: one that is 1 Just Noticeable Difference
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Fig. 3. Actors featured in FaceExpressions-70k dataset, derived from MultiFace dataset, along with the number of expression transition sequences per actor.

(JND) away from the peak expression, and another that is 1 JND
away from the neutral expression as shown in Fig. 2. In total, 462
sequences across eight actors (53-60 per actor as shown in Fig. 3)
were sampled in this way. To ensure a balanced representation of
the transition, we also selected a midpoint frame between these
two JND-determined frames. This sampling strategy resulted in 5
frames, emphasizing perceptually meaningful changes while offer-
ing a comprehensive and accurate depiction of expression dynamics.
Figure 2 illustrates the sampling process. Five frames were deemed
sufficient for our purposes based on informal trials using the QUEST
method applied to expressions in this dataset, where we observed
approximately 5-6 JNDs from peak to neutral.

3.3 Dataset Construction
Following frame sampling from the expression transition sequences,
paired image comparisons are created to prepare the dataset for
subjective annotation. These are categorized in two sets:

• Intra-ExpressionComparisons: Paired images were drawn from
the same expression transition sequence, capturing variations be-
tween different intensities of the same expression. For each transi-
tion sequence, we generated

(5
2
)
= 10 comparisons, resulting in a

total of 4,620 comparisons across 462 sequences.
• Inter-Expression Comparisons: To limit the number of com-
parisons, we executed two steps. First, we excluded the neutral
images from both sequences and randomly selected 3 out of the 4
non-neutral images from each sequence, resulting in 3×3 = 9 com-
parisons across two expression transition sequences. Second, to
further reduce the total number of comparisons, we used only half
of all possible combinations of expression pairs (0.5 ×

(61
2
)
= 915)

per actor. Since not all expression sequences were available for
every actor, we managed the allocation of inter-expression pairs
to ensure each pair appeared four times in the final dataset while
maintaining 915 pairs per actor. To accomplish this, we identified
1,830 inter-expression pairs and determined how many of the eight
actors shared both expressions within each pair. Next, we sorted
the list based on the number of actors. Starting with pairs involv-
ing the fewest actors, we allocated each expression pair to four
actors using a round-robin approach. Consequently, this segment
comprised a total of 915 × 8 (faces) × 9 = 65, 880 comparisons.

This results in a total of 70,500 comparisons, between both varying
levels of the same expression and across distinct expressions.

3.4 Subjective Study
Given the dataset’s size and the requirement for a large number of
ratings per sample, an in-lab study was not feasible. Instead, we
conducted an online study using AMT to gather ground-truth hu-
man opinion scores on facial expression differences. AMT has the
advantage of enabling data collection from a diverse demographic,
providing more representative ratings compared to in-lab studies,
which are often restricted to homogenous groups, such as univer-
sity students. To ensure data reliability, a rigorous methodology
of quality control measures was employed to exclude unreliable
participants (Sec. 3.4.3). Before conducting the large-scale study on
AMT, we carried out a small in-lab pilot study with reliable subjects
to validate our overall protocol.

3.4.1 Data Organization and HIT. We organized all inter-expression
and intra-expression sequences into 354 batches, each batch con-
taining approximately 22 sequences. This resulted in around 200
image pair comparisons per batch for annotation. Each batch was
carefully designed to include at least one sequence from one of the
eight actors, as well as at least one sequence of intra-expression
comparisons. These batches were then presented as Human Intel-
ligence Tasks (HITs) on AMT for annotation. At the beginning of
each rating session, all comparisons in the batch were randomly
shuffled, and the two images in each pair were randomly assigned
to appear on the left or right side of the screen. This was done to
minimize any bias in the rating process across subjects related to the
order of presentation or the positioning of the image pairs. Before
raters could participate in the annotation process, each batch began
with a training session designed to familiarize them with the rating
process. This included example ratings of expression differences,
helping raters understand the diversity of expression differences
they would encounter during the task. A screenshot of the exemplar
rating screen is shown in Fig. 4. The rating bar is initially set to
zero (indicating ‘Identical’) for each trial, and users were required
to adjust the bar based on their perceived expression difference.

3.4.2 Pilot Study. To fine-tune our method, we first validated the
study protocol locally using a controlled group of subjects, before
deploying it in large-scale crowdsourcing. We recruited 25 reliable
participants from a cohort of graduate students and curated two
batches for annotation that contained no overlap with the samples
from the 354 main study batches. This pilot study was used to create
a baseline for inter-subject correlations (Sec. 3.4.8), which measures
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Fig. 4. Sample study screen to collect face expression difference ratings.

agreement among human raters. An inter-subject correlation of 0.94
was found, which confirmed that our subjective testingmethodology
is reliable and produces valid results. This pilot also facilitated the
creation of “golden samples,” which were subsequently used in the
AMT study to monitor the rating quality of each HIT (Sec. 3.4.3).

3.4.3 Large Scale Subjective Study on AMT. After successfully vali-
dating our protocol via the in-lab pilot study, we opened the study
to AMT workers, applying the qualification criteria (Section 3.4.4)
and data quality monitoring measures (Section 3.4.5). The number
of HITs was adjusted for each batch to ensure that, after rejecting
inconsistent subjects, each batch retained 32 valid ratings. While
the ITU-T recommends only 15–18 participants [Union 2004] for
full-reference video quality assessment, we opted for a larger pool
to enhance reliability as our study operates on a very novel stimulus
type (expressions) and to account for noise stemming from crowd-
sourcing. We later show that the study achieved a high degree of
inter-subject correlation, validating this decision. For each batch
in the AMT study, we implemented two strategies to monitor data
quality, incorporating five example cases for each strategy.
• Golden Samples: To evaluate subjects’ understanding, “golden
samples” with known expression difference values were included
in each session. Since FaceExpressions-70k is the first database of
its kind, five data samples from the pilot study were selected, and
their mean opinion scores were used as reference values for the
rejection criteria. Five samples were randomly selected from both
extremes of the expression difference spectrum, with low standard
deviations in predicted differences, as less ambiguous samples are
more effective for checks.

• Repeated Trials: To assess subject reliability, five randomly se-
lected samples from each batch were repeated twice during the
study, with the consistency between the two trials contributing to
the rejection criteria.

3.4.4 Subject Qualification on AMT. To ensure reliable and high-
quality data collection, we implemented strict qualifications for AMT
workers who could participate in our studies. Participants were re-
quired to have over 10,000 lifetime approved HITs and an approval
rate exceeding 90%, signaling their experience and reliability. Work-
ers were also restricted from rating the same batch of expression
comparisons more than once to maintain consistency and reduce
potential biases. Once qualified, participants could contribute to a

Table 1. Demographic statistics of AMT workers

Demography Statistics
Gender Male Female Other Prefer Not to Say

Counts as % 57.78% 41.82% 0.09% 0.29%
Age 20-30 30-40 40-50 50-60 Others

Counts as % 32.12% 43.58% 10.87% 10.38% 3.03%
Location North America South America Asia & Australia Europe Africa

Counts as % 43.38% 23.21% 28.30% 3.03% 2.05%

maximum of 20 batches unless flagged for inconsistencies via our
monitoring system, described next.

3.4.5 HIT Rejection Criterion and Inconsistent Rater Blocking. We
also developed a data quality monitoring system to ensure the reli-
ability of the collected data. Every HIT was monitored, and those
with inconsistencies were rejected. HIT rejections were based on
several criteria, including detecting if users provided identical rat-
ings for all image pairs (standard deviation < 5), minimal slider
movement (standard deviation < 5), deviations from golden scores
obtained in the in-lab pilot study (>= 3 out of 5 violations), and
rating consistency for repeated trials where scores deviated by 25 or
more (>= 3 out of 5 violations). Additionally, HITs were rejected if
the combined violations from golden score checks and consistency
checks reached or exceeded 4 out of 10. In some cases, repeated
HIT rejections led to subject blocking, with immediate blocking for
violations of the first two criteria or for accumulating more than
four rejected HITs.

3.4.6 Subject Rater Pool: Demography. We summarize the demo-
graphic statistics of AMT workers participating in our dataset in
Table 1. We found that raters had diverse demographics, spanning
genders, age groups (20-60+), and geographical regions. Prior re-
search has shown that emotion recognition can be influenced by cul-
tural and social factors, including race-based social categorization,
which can lead to biases in recognizing emotions across different
groups [Reyes et al. 2018]. As a consequence, this broad demographic
base is likely to enhance FaceExpressions-70k applicability for fa-
cial expression analysis, and reduce possible biases from cultural,
age-related, or gender-based variations.

3.4.7 Processing of Raw Scores. Using the subjective methodology
described above, we obtained a total of over 2.2 million subjective
opinions from 1,021 unique subjects, with 32 ratings of expression
differences per image pair. The ratings obtained in this manner were
then processed to obtain a single expression difference score label
per image pair in the dataset. The simplest method for calculating
this is the Mean Opinion Score (MOS), determined by averaging the
subjective ratings given to each pair of images.:

𝑀𝑂𝑆 =
1
𝑛

∑︁
𝑖

𝑑𝑖

where 𝑑𝑖 is the expression difference rating provided by subject 𝑖 for
a specific image pair, and 𝑛 is the total number of ratings collected
for that pair, which is 32 in our case.
A more refined method for determining labels, which we adopt

in this work, is presented in the SUREAL framework [Li et al. 2020],
and uses Maximum Likelihood Estimates, grounded in the following
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subject rating model:

𝐷𝑠𝑝 = 𝐷𝑝 + 𝑏𝑠 + 𝜎𝑠N(0, 1)
where 𝐷𝑝 corresponds to the “true expression difference” for image
pair 𝑝 , N(0, 1) is a standard Gaussian random variable, 𝑏𝑠 denotes
“subject bias,” and 𝜎𝑠 denotes “subject variability.” The Alternating
Projection solver described by Li et al. [2020] is used to estimate the
model parameters. The use of this approach offers several advan-
tages, such as reduced vulnerability to subject bias, the generation
of tighter confidence intervals, effective handling of missing data,
the ability to deliver comprehensive insights into both the dataset
samples and the test subjects, and has recently emerged as the pre-
ferred methodology for obtaining mean opinion scores in newer
psychometric studies on video quality [Chen et al. 2024; Saha et al.
2023; Shang et al. 2022; Venkataramanan and Bovik 2024].
The distribution of the estimated SUREAL scores of face expres-

sion differences for all image pairs in the FaceExpressions-70k data-
base is shown in Fig. 5, revealing a broad range of magnitudes of
expression differences all falling within the range [1.88, 87.50]. The
intra-expression pairs are shown in blue, while the inter-expression
pairs are in red. The histogram for intra-expression differences is
almost uniform, while the histogram for inter-expression differ-
ences is left-skewed. This is expected, as image pairs resulting from
inter-expression differences, typically exhibit greater expression
differences than those originating from intra-expression differences.
The average standard deviation of the obtained expression differ-
ence scores was 2.8, in line with previous psychometric studies on
video quality assessment using the SUREAL framework [Chen et al.
2024; Saha et al. 2023]. More discussions in Appendix A.3.

3.4.8 Inter-subject Correlation. To assess the reliability of subject
ratings, we analyzed inter-subject correlation by dividing the ratings
for each sample in the dataset into two random equal-size subsets.
SUREAL scores were independently calculated for each subset, re-
sulting in two quality labels per sample. The Spearman’s Rank Order
Correlation Coefficient (SROCC) was computed between these la-
bels, and the process was repeated 50 times. The average SROCC
across all iterations was used to quantify inter-subject correlation,
with higher values reflecting greater agreement among subjects. The
resulting inter-subject correlation was 0.914, typical of large-scale
psychometric studies on AMT [Venkataramanan and Bovik 2024].

3.5 Analysis of Subjective Expression Difference Scores
In this section, we analyze subjective facial expression difference
scores, exploring patterns of perceived expression similarity and
distinctiveness to uncover key trends in human perceptual judg-
ments. The findings show how subtle and dynamic facial changes
contribute to the perception of expression differences.

3.5.1 Variation in Peak to Neutral Expression Difference across Ex-
pressions. In Fig. 6, we plot the subjective expression differences
between peak and neutral frames across eight actors for 41 expres-
sions. The blue lines indicate the range of differences, showing the
minimum-to-maximum variation across actors, while the red dots
represent the median values for each expression and black ‘x’ for
individual actor values. The plot reveals notable trends, with ex-
pressions such as “Lips Together Pushed Forward” and “Jaw Back”
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Fig. 5. Histogram of obtained Intra and Inter expression difference scores.
Additional histograms of expression differences across various splits are in
the Appendix (Figs. 13–16).

exhibiting large variability, indicating that the same expressions
were perceived as being highly different across actors. In contrast, ex-
pressions like “Raise Upper Lip Scrunch Nose” and “Jaw Open Huge
Smile” show narrow ranges, indicating a more uniform portrayal
and perception across actors. Fig. 7 illustrates this phenomenon.
High-intensity expressions, such as “Show All Teeth” and “Open
Mouth Wide Tongue Up and Back,” exhibit higher median values,
reflecting significant perceptual differences from neutral. By con-
trast, subtle expressions like “Raise Inner Eyebrows” show smaller
differences, suggesting they are less perceptually distinct. Thus, sub-
jective perception of facial expressions varies significantly across
actors, with some expressions showing large variability and others
being more consistently perceived. These observations highlight
the complexity of subjective expression perception and the need
to account for actor-specific variability when building robust facial
expression differencing models.

3.5.2 Variability in Expression Transitions. Expression transitions
and differences from neutral are not uniform, varying across dif-
ferent actors and expressions for the same actor. Analyzing intra-
sequence images reveals that expression differences from neutral
vary significantly, both between actors and within the same actor
across different expressions. Fig. 9 illustrates these trends by plotting
the normalized expression differences from neutral: in the two plots
on the left, actors are kept constant to analyze variability across
expressions for the same actors, while in the two plots on the right,
expressions are kept constant to examine variation across different
actors for the same expressions. The transition back to neutral after
reaching the full expression shows variability in timing and slope
during the recovery phase. This highlights that individuals not only
require different amounts of time to exhibit and recover from the
same expression, but also show unique temporal patterns across
different expressions, emphasizing the complex nature of expression
dynamics, shaped by individual differences and expression-specific
factors. More visualizations are in Appendix A.4.

3.5.3 Inter-Expression Differences. Fig. 10 illustrates the mean pair-
wise facial expression differences across actors as a heatmap, where
green shades represent lower differences and red indicates higher
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differences. One of the highest inter-expression differences is ob-
served between “Scrunch Face Squeeze Eyes” and “Scream Eye-
brows Up.” By contrast, minimal differences are found between the
subtle expressions “Jaw Clench” and “Nostrils Sucked In.” Exam-
ple comparisons are shown in Fig. 8. Using the inter-expression
difference metric, we clustered the expressions with Hierarchical
Agglomerative Clustering into 7 clusters (determined via the elbow
method). Expressions within the clusters signify perceptually sim-
ilar expressions, as determined by the clustering algorithm based
on inter-expression difference scores. The clustered expressions are
grouped and color-coded in Fig. 10. Expression differences near
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Fig. 8. Examples of highest and lowest inter-expression differences.

the diagonal appear in greenish-yellow hues, indicating low intra-
cluster difference scores. By contrast, most of the other regions are
shaded red, reflecting higher inter-cluster expression differences.
We also demonstrate an application of using the inter-expression
distances for expression rendering in Appendix A.5.

3.5.4 Effect of Asymmetrical Expressions on Expression Differences.
Asymmetrical expressions, such as “Mouth Right Open” or “Mouth
Left Open,” involve unilateral facial movements.We analyzedwhether
expression difference scores varied based on the direction of the ex-
pression to assess the impact of lateralization. For intra-expression
sequences, we compared scores from “Right” and “Left” expressions
using two-sample one-sided t-tests. The results (p-value = 0.23, t-
statistic = 0.709) indicated no significant difference in the means. For
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Fig. 10. Bottom-Left Heatmap of mean Inter-Expression scores in FaceExpressions-70k dataset. The expressions are color-coded to demonstrate the clusters
obtained from Hierarchical Agglomerative Clustering with 𝑛clusters = 7. Ticks on the x-axis are abbreviated to display initials of expression numbers from the
MultiFace database, while the y-axis displays all expression names in full. Top-Right Shows 61 peak expressions using Actor 6. Best viewed zoomed. The raster
scan of the face expression images follows the same order of expressions in the heatmap. Images are color-coded according to cluster IDs (same as heatmap).

inter-expression sequences, we compared the mean of the expres-
sion scores for right and left lateral movements against symmetric
expressions using t-tests. Again, no statistically significant differ-
ences were found (p-value = 0.37, t-statistic = 0.331).

4 Metric Evaluation
This section provides a performance benchmark using commonly
used metrics (see Sec. 2.4) on FaceExpressions-70k. The regression
performance of these methods was evaluated using two metrics:
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Table 2. Performance of fidelity and perceptual image similarity metrics on
the FaceExpressions-70k dataset. Best performing method is bold-faced.

Method SROCC PLCC
Simple Fidelity

Metrics
Mean Squared Error 0.414 0.401
Mean Absolute Error 0.396 0.385

Perceptual Image
Similarity Metrics

SSIM [Wang et al. 2004] -0.146 -0.135
LPIPS (AlexNet) [Zhang et al. 2018] 0.435 0.457

Spearman’s Rank-Order Correlation (SROCC) for monotonicity and
Pearson’s Correlation (PLCC) for prediction accuracy.
First, we tested image similarity metrics (Table 2). As expected,

simple fidelity metrics had poor performance, emphasizing the spe-
cialized nature of the task. Both SSIM [Wang et al. 2004], com-
monly used for low-level perceptual distortion prediction, and LPIPS
[Zhang et al. 2018] delivered weak performances, showing that these
metrics are inadequate for predicting expression differences.
Next, we evaluated the zero-shot performance of various pre-

trained deep models, as well as the Blendshape model [Lewis et al.
2014], which utilizes facial deformation coefficients to capture ex-
pression variations. We extracted features from pretrained networks
for the deep learning models, while the blendshape coefficients were
obtained using the MediaPipe software [Google 2023]. Once the
features for each image pair were extracted, two simple distance
metrics—cosine similarity and L1 distance—were applied. The pre-
trained models include the widely used ImageNet-trained ResNet-
50 in supervised [He et al. 2015], and self-supervised [Chen et al.
2020] settings. Additionally, we include the popular multimodal
pretrained model CLIP [Radford et al. 2021], known for its remark-
able versatility across various vision tasks. Finally, we include the
pre-trained models for face-related tasks, including the face-specific
models FaRL [Zheng et al. 2021], FMAE-IAT [Ning et al. 2024]
and MAE-Face [Ma et al. 2023], designed to capture facial features
more effectively. The results in Table 3 indicate that the L1 distance
generally outperformed the cosine similarity. FaRL achieved the
highest performance across the evaluation metrics, while the sim-
ple Blendshape model also demonstrated comparable performance
when combined with the L1 distance. These results highlight the
robustness of FaRL’s feature extraction capabilities. However, the
overall performances were moderate, suggesting the potential for
significant improvements through more specialized architectures,
fine-tuning with the FaceExpressions-70k dataset, or by the use of
more specialized perceptual models. More discussion on evaluation
metrics can be found in Appendix A.6.

5 Applications

5.1 Training Expressions Difference predictors
In Sec. 4, we benchmarked the performance of existing methods us-
ing the FaceExpressions-70k dataset. However, the dataset can also
be utilized to train improved facial expression difference predictors.
To demonstrate this, we extracted features from the best-performing
method in Table 2, FaRL, and trained a support vector regressor
(SVR) model using a linear kernel to regress from differences in
embeddings to expression difference scores. The training was con-
ducted using a 6:2 actor train-test split across 28 iterations, and
the median performance was recorded. Following previous studies

[Chen et al. 2024; Saha et al. 2023], this split was done along the “ac-
tor” variable to prevent content bias from influencing the test data.
The SVR model achieved a relatively stronger performance, with
an SROCC of 0.811 and a PLCC of 0.823. These results indicate that
even simple regression models using features extracted from pre-
trained models can improve expression difference prediction. This
suggests that custom methods to measure expression differences
could achieve even better performance.

Table 3. Zero-Shot performance of feature-extraction based methods on the
FaceExpressions-70k dataset. The best-performing method is bold-faced.

Method
Metric:

Cosine Similarity
Metric:

L1 Distance
SROCC PLCC SROCC PLCC

Face Specific
Shallow Features

Blendshape
Coefficients
[Google 2023]

0.631 0.613 0.768 0.711

Supervised Pretrained
Models

ResNet-50
[He et al. 2015] 0.698 0.600 0.693 0.663

Self-Supervised
Pretrained Models

MoCo-v2 (ResNet-50)
[Chen et al. 2020] 0.667 0.539 0.665 0.630

General Purposed
Multi-modal

Pretrained Models

CLIP (ResNet-50)
[Radford et al. 2021] 0.683 0.637 0.702 0.717

CLIP (ViT-B/16)
[Radford et al. 2021] 0.647 0.607 0.688 0.715

Face Specific
Pretrained Models

MAE-Face (ViT-B/16)
[Ma et al. 2023] 0.673 0.566 0.675 0.659

FMAE-IAT (ViT-B/16)
[Ning et al. 2024] 0.653 0.550 0.659 0.625

FaRL (ViT-B/16)
[Zheng et al. 2021] 0.759 0.690 0.773 0.756

5.2 Face Avatars in Virtual Reality
In virtual reality applications, HMD (head-mounted display) cam-
eras continuously track users’ facial expressions to ensure accurate
face avatar generation. High tracking accuracy often requires dense
sampling, which increases computational load. We demonstrate that
the data from our crowdsourced study can be used to determine
sampling intervals that avoid perceptible lag between the user’s
facial expressions and avatar counterpart while balancing efficiency.
Another closely related application is determining the acceptable
latency for driving face avatars in Virtual Reality, considering ren-
dering, transmission, and other processing delays. Both applications
require selecting time intervals to ensure no perceptible difference
in expressions between the two sampled time stamps.

To achieve this, we first determine the expression difference mag-
nitude corresponding to 1 JND, which we will use as a threshold.
Leveraging our dataset design (see Fig. 2), we have an abundance of
image pairs with annotated expression differences sampled 1 JND.
We compute the median of these annotations, yielding an expres-
sion difference of 20.39. Next, using a linear expression transition
approximation (valid only for small differences) between consec-
utive pairs of the three intermediate intra-sequence samples, we
computed the transition time required for a 1 JND expression dif-
ference (20.39 MOS). This was repeated for each expression, and
the per-actor statistics using box plots are shown in Fig. 11 (left).
The first and last intra-expression samples were excluded, as the
peak and neutral expressions were held constant and do not reflect
expression transition dynamics reliably. From the figure, we observe
that an approximate 11 ms (shown in red) interval, or 90 frames
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Fig. 11. Left: Figure shows boxplots of estimated 1 JND timings for expression transitions across expressions for each actor. The red line indicates the chosen
sampling interval to keep changes below 1 JND for all expressions and actors. Right: Illustration of 1 JND prediction validation for Actor 7 across two
expressions. The images, displayed at 30 fps, show the Just Noticeable Differences after the red-marked JND point relative to expression at t=0.

per second, ensured no perceptible expression difference across ex-
pression and actors. However, if we customized the selection for
each actor, higher intervals could be used—for example, for actor
7, the interval could be as high as 22 ms. We further demonstrate
the alignment of the predicted JND with visual perception for two
expressions in Fig. 11 (right).

6 Conclusion and Future Work
In this work, we introduced FaceExpressions-70k, a large-scale
dataset with over 70,500 crowdsourced comparisons to quantify
perceived facial expression differences. Our analysis provides in-
sights into both intra- and inter-expression differences across vari-
ous expressions and actors. We also demonstrated the usefulness of
FaceExpressions-70k through two applications: training expression
difference models and making informed decisions on acceptable
latency and sampling rates for facial expressions in avatar-driven
systems. Future work could focus on building improved expression
difference metrics. Accurate expression difference metrics could
have diverse use cases, such as training face avatar models by em-
ploying them as perceptual loss functions. Further research on how
expression differences are perceived from side and non-frontal per-
spectives could be interesting. Subjective studies on expression
differences using 3D face models could also provide deeper insights
into geometric variations and their perceptual impacts.

Acknowledgments
The authors acknowledge the Texas Advanced Computing Center
(TACC), at the University of Texas at Austin, for providing HPC,
visualization, database, and grid resources that have contributed to
the research results reported in this paper. The authors would also
like to acknowledge support for this research from the National Sci-
ence Foundation AI Institute for Foundations of Machine Learning

(IFML) under Grant 2019844, and from Meta Platforms. We thank
Lucjan Janowski for helpful discussions and editorial feedback.

References
Amazon. 2025. Amazon Mechanical Turk. https://www.mturk.com Accessed: 2025-01-

08.
Chen Cao, Yanlin Weng, Shun Zhou, Yiying Tong, and Kun Zhou. 2014. FaceWarehouse:

A 3D Facial Expression Database for Visual Computing. IEEE Transactions on
Visualization and Computer Graphics 20, 3 (2014), 413–425. https://doi.org/10.1109/
TVCG.2013.249

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. 2020. Improved Baselines with
Momentum Contrastive Learning. arXiv:2003.04297 [cs.CV]

Yu-Chih Chen, Avinab Saha, Alexandre Chapiro, Christian Häne, Jean-Charles Bazin,
Bo Qiu, Stefano Zanetti, Ioannis Katsavounidis, and Alan C. Bovik. 2024. Subjective
and Objective Quality Assessment of Rendered Human Avatar Videos in Virtual
Reality. IEEE Transactions on Image Processing 33 (2024), 5740–5754. https://doi.
org/10.1109/TIP.2024.3468881

Zeynep Cipiloglu Yildiz. 2023. Learning a crowd-powered perceptual distance metric
for facial blendshapes. J. Image Video Process. 2023, 1 (May 2023), 20 pages. https:
//doi.org/10.1186/s13640-023-00609-w

Google. 2023. MediaPipe. https://github.com/google/mediapipe. Accessed: 2025-01-08.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual Learning

for Image Recognition. arXiv:1512.03385 [cs.CV]
Zhongshi Jiang, Kishore Venkateshan, Giljoo Nam, Meixu Chen, Romain Bachy, Jean-

Charles Bazin, and Alexandre Chapiro. 2024. FaceMap: Distortion-Driven Perceptual
Facial Saliency Maps. In SIGGRAPH Asia 2024 Conference Papers (SA ’24). Association
for Computing Machinery, New York, NY, USA, Article 141, 11 pages. https:
//doi.org/10.1145/3680528.3687639

J. P. Lewis, Ken Anjyo, Taehyun Rhee, Mengjie Zhang, Fred Pighin, and Zhigang Deng.
2014. Practice and Theory of Blendshape Facial Models. In Eurographics 2014 - State
of the Art Reports, Sylvain Lefebvre and Michela Spagnuolo (Eds.). The Eurographics
Association. https://doi.org//10.2312/egst.20141042

Zhi Li, Christos G. Bampis, Lucjan Janowski, and Ioannis Katsavounidis. 2020. A simple
model for subject behavior in subjective experiments. Electronic Imaging 2020, 11
(2020), 131–1.

Hanwei Liu, Rudong An, Zhimeng Zhang, Bowen Ma, Wei Zhang, Yan Song, Yujing Hu,
Wei Chen, and Yu Ding. 2024. Norface: Improving Facial Expression Analysis by
Identity Normalization. arXiv:2407.15617 [cs.CV] https://arxiv.org/abs/2407.15617

Stephen Lombardi, Jason Saragih, Tomas Simon, and Yaser Sheikh. 2018. Deep appear-
ance models for face rendering. ACM Transactions on Graphics (ToG) 37, 4 (2018),
1–13.

Stephen Lombardi, Tomas Simon, Gabriel Schwartz, Michael Zollhoefer, Yaser Sheikh,
and Jason Saragih. 2021. Mixture of volumetric primitives for efficient neural
rendering. ACM Transactions on Graphics (ToG) 40, 4 (2021), 1–13.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.

https://www.mturk.com
https://doi.org/10.1109/TVCG.2013.249
https://doi.org/10.1109/TVCG.2013.249
https://arxiv.org/abs/2003.04297
https://doi.org/10.1109/TIP.2024.3468881
https://doi.org/10.1109/TIP.2024.3468881
https://doi.org/10.1186/s13640-023-00609-w
https://doi.org/10.1186/s13640-023-00609-w
https://github.com/google/mediapipe
https://arxiv.org/abs/1512.03385
https://doi.org/10.1145/3680528.3687639
https://doi.org/10.1145/3680528.3687639
https://doi.org//10.2312/egst.20141042
https://arxiv.org/abs/2407.15617
https://arxiv.org/abs/2407.15617


FaceExpressions-70k: A Dataset of Perceived Expression Differences • 11

Bowen Ma, Wei Zhang, Feng Qiu, and Yu Ding. 2023. A Unified Approach to Facial
Affect Analysis: TheMAE-Face Visual Representation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 5923–5932.

Rachel McDonnell, Katja Zibrek, Emma Carrigan, and Rozenn Dahyot. 2021. Model for
predicting perception of facial action unit activation using virtual humans. Comput.
Graph. 100, C (Nov. 2021), 81–92. https://doi.org/10.1016/j.cag.2021.07.022

Mang Ning, Albert Ali Salah, and Itir Onal Ertugrul. 2024. Representation
Learning and Identity Adversarial Training for Facial Behavior Understanding.
arXiv:2407.11243 [cs.CV]

Kristine L Nowak and Jesse Fox. 2018. Avatars and computer-mediated communication:
a review of the definitions, uses, and effects of digital representations. Review of
Communication Research 6 (2018), 30–53.

Alec Radford, Jong W. Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. 2021. Learning Transferable VisualModels FromNatural
Language Supervision. arXiv:2103.00020 [cs.CV] https://arxiv.org/abs/2103.00020

Rim Rekik, Stefanie Wuhrer, Ludovic Hoyet, Katja Zibrek, and Anne-Hélène Olivier.
2024. A Survey on Realistic Virtual Human Animations: Definitions, Features and
Evaluations. In Computer Graphics Forum. Wiley Online Library, e15064.

Bryan N. Reyes, Sarah C. Segal, and Melody C. Moulson. 2018. An investigation of the
effect of race-based social categorization on adults’ recognition of emotion. PLOS
ONE 13, 2 (2018), e0192418. https://doi.org/10.1371/journal.pone.0192418

Avinab Saha, Yu-Chih Chen, Chase Davis, Bo Qiu, Xiaoming Wang, Rahul Gowda,
Ioannis Katsavounidis, and Alan C. Bovik. 2023. Study of Subjective and Objective
Quality Assessment of Mobile Cloud Gaming Videos. IEEE Transactions on Image
Processing 32 (2023), 3295–3310. https://doi.org/10.1109/TIP.2023.3281170

Zaixi Shang, Joshua P. Ebenezer, Alan C. Bovik, Yongjun Wu, Hai Wei, and Sriram
Sethuraman. 2022. Subjective Assessment Of High Dynamic Range Videos Un-
der Different Ambient Conditions. In 2022 IEEE International Conference on Image
Processing (ICIP). 786–790. https://doi.org/10.1109/ICIP46576.2022.9897940

Marie-Hélène Tessier, Chloé Gingras, Nicolas Robitaille, and Philip L Jackson. 2019.
Toward dynamic pain expressions in avatars: perceived realism and pain level of
different action unit orders. Computers in Human Behavior 96 (2019), 95–109.

Thomas Treal, Philip L. Jackson, Jean Jeuvrey, Nicolas Vignais, and Aurore Meugnot.
2021. Natural human postural oscillations enhance the empathic response to a facial
pain expression in a virtual character. Scientific Reports 11, 1 (2021), 12493.

International Telecommunication Union. 2004. Objective Perceptual Assessment of
Video Quality: Full Reference Television. https://www.itu.int/ITU-T/studygroups/
com09/docs/tutorial_opavc.pdf Accessed: 2024-01-08.

Abhinau K. Venkataramanan and Alan C. Bovik. 2024. Subjective Quality Assessment
of Compressed Tone-Mapped High Dynamic Range Videos. IEEE Transactions on
Image Processing 33 (2024), 5440–5455. https://doi.org/10.1109/tip.2024.3463418

Christian Wallraven, Martin Breidt, Douglas W Cunningham, and Heinrich H Bülthoff.
2008. Evaluating the perceptual realism of animated facial expressions. ACM
Transactions on Applied Perception (TAP) 4, 4 (2008), 1–20.

Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. 2004. Image
quality assessment: from error visibility to structural similarity. IEEE Transactions
on Image Processing 13, 4 (2004), 600–612. https://doi.org/10.1109/TIP.2003.819861

Andrew B Watson and Denis G Pelli. 1983. QUEST: A Bayesian adaptive psychometric
method. Perception & Psychophysics 33, 2 (1983), 113–120. https://doi.org/10.3758/
BF03202828

Krzysztof Wolski, Laura Trutoiu, Zhao Dong, Zhengyang Shen, Kevin MacKenzie, and
Alexandre Chapiro. 2022. Geo-metric: A Perceptual Dataset of Distortions on Faces.
ACM Transactions on Graphics (TOG) 41 (2022).

Chenghsin Wuu, Ningyuan Zheng, Scott Ardisson, Rohan Bali, Danielle Belko, Eric
Brockmeyer, Lucas Evans, Timothy Godisart, Hyowon Ha, Xuhua Huang, Alexan-
der Hypes, Taylor Koska, Steven Krenn, Stephen Lombardi, Xiaomin Luo, Kevyn
McPhail, Laura Millerschoen, Michal Perdoch, Mark Pitts, Alexander Richard, Jason
Saragih, Junko Saragih, Takaaki Shiratori, Tomas Simon,Matt Stewart, AutumnTrim-
ble, Xinshuo Weng, David Whitewolf, Chenglei Wu, Shoou-I Yu, and Yaser Sheikh.
2022. Multiface: A Dataset for Neural Face Rendering. arXiv:2207.11243 [cs.CV]

Zhixuan Yu, Jae S. Yoon, In Kyu Lee, Prashanth Venkatesh, Jaesik Park, Jihun Yu,
and Hyun Soo Park. 2020. HUMBI: A Large Multiview Dataset of Human Body
Expressions. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2987–2997. https://doi.org/10.1109/CVPR42600.2020.00306

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. 2018.
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In CVPR.

Wei Zhang, Xianpeng Ji, Keyu Chen, Yu Ding, and Changjie Fan. 2021. Learning a Facial
Expression Embedding Disentangled From Identity. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 6759–6768.

Yinglin Zheng, Hao Yang, Ting Zhang, Jianmin Bao, Dongdong Chen, Yangyu Huang,
Lu Yuan, Dong Chen, Ming Zeng, and FangWen. 2021. General Facial Representation
Learning in a Visual-Linguistic Manner. arXiv preprint arXiv:2112.03109 (2021).

Katja Zibrek, Sean Martin, and Rachel McDonnell. 2019. Is photorealism important for
perception of expressive virtual humans in virtual reality? ACM Transactions on
Applied Perception (TAP) 16, 3 (2019), 1–19.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.

https://doi.org/10.1016/j.cag.2021.07.022
https://arxiv.org/abs/2407.11243
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://doi.org/10.1371/journal.pone.0192418
https://doi.org/10.1109/TIP.2023.3281170
https://doi.org/10.1109/ICIP46576.2022.9897940
https://www.itu.int/ITU-T/studygroups/com09/docs/tutorial_opavc.pdf
https://www.itu.int/ITU-T/studygroups/com09/docs/tutorial_opavc.pdf
https://doi.org/10.1109/tip.2024.3463418
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.3758/BF03202828
https://doi.org/10.3758/BF03202828
https://arxiv.org/abs/2207.11243
https://doi.org/10.1109/CVPR42600.2020.00306


12 • Saha et al.

Supplementary Material for FaceExpressions-70k: A Dataset of
Perceived Expression Differences

A Appendix

A.1 Sampling MultiFace Dataset
The MultiFace dataset provides two expression transition protocols:
V1, which includes 10 actors performing 65 peak-to-neutral transi-
tions and one range-of-motion segment; and V2, which includes 3
actors performing two peak-to-neutral transitions and 18 range-of-
motion segments. It is important to note that not all expressions are
represented for every identity. In V1, transitions are clearly anno-
tated with peak and neutral points (i.e., the first and last frames of
each sequence), offering a structured and consistent format. In con-
trast, V2 consists of longer range-of-motion segments containing
multiple expressions without explicit annotations for expression
labels or transition boundaries, making them less suitable for use
without substantial manual labeling. Given these limitations, we
prioritized V1 for our study due to its broader expression cover-
age, structured design, and larger set of actors. Following budget
constraints, we selected a subset of eight identities from the ten
available in V1, aiming to retain as much demographic diversity as
possible.

A.2 Quest Proceedure
Using the setup shown in Fig. 12, we ran one iteration of the QUEST
procedure [Watson and Pelli 1983] with 50 pairwise comparisons
to identify two frames that are located 1 Just Noticeable Difference
(JND) from the peak expression and neutral expressions as illus-
trated in Fig. 2. 1 JND if defined as the stimulus difference that can be
detected 75% of the time by observers, reflecting a perceptual point
at which changes in facial expression become reliably noticeable at
this conventional threshold. For each of the 462 expression transi-
tion sequences in our dataset, we ran two iterations of the QUEST
method. In the first iteration, the peak expression was selected as
the anchor, and expressions transitioning from peak to neutral were
tested for perceptible differences. In the second iteration, the neu-
tral expression was chosen as the anchor, and expressions along
the peak-to-neutral transition were tested. During the side-by-side
comparisons, the anchor and test images were randomly swapped
to mitigate any potential positional biases.

A.3 Distributions of Expression Differences
This section presents additional visualizations and insights into
the expression difference histograms derived from the proposed
dataset. Figure 13 illustrates the histograms of mean opinion scores
(MOS) for expression differences. The left histogram represents
intra-expression differences, the middle shows inter-expression dif-
ferences, and the right displays the combined distribution of intra-
and inter-expression differences. The intra-expression histogram
exhibits an almost uniform distribution within the range [0, 80],
suggesting that expression difference pairs obtained between differ-
ent activation levels of the same expression are evenly spread. On

the other hand, the inter-expression histogram is left-skewed, indi-
cating that expression differences between inter-expression pairs
tend to be high, reflecting significant perceptual variation between
distinct expressions. As inter-expression pairs constitute a signifi-
cantly larger portion of the dataset, the combined histogram closely
resembles the inter-expression distribution, dominating the overall
shape.

Figure 14 depicts the histograms of standard deviations (SOS) of
predicted values for intra-, inter-, and combined expression differ-
ences. Unlike the expression difference histograms, which showed
distinct shapes between intra- and inter-expression pairs, the SOS
distributions of both have similar shapes, are approximately sym-
metric, and follow a bell-shaped pattern. The distribution of the
standard deviation of expression differences is concentrated within
the range of 2 to 4, with a mean of 2.8. To further explore the range
of expression differences associated with higher and lower stan-
dard deviation values, we divided the standard deviation values
into four groups: less than the lower quartile (< 2.24), between the
lower quartile and the median(≥ 2.24 and < 2.78), between the
median and the upper quartile (≥ 2.78 and < 3.32), and greater
than the upper quartile (≥ 3.32). We then plotted the histograms of
expression differences for each group to analyze their distributions
in Fig. 15. The plots indicate that expression difference scores at
the higher end (>70) are predicted with relatively lower standard
deviation, suggesting greater agreement among raters. In contrast,
the mid-range scores (40-60) exhibit higher variation among raters,
indicating greater ambiguity.

Another interesting aspect to explore is the histogram of expres-
sion differences across the eight actors. However, since our dataset
includes different expression pairs for inter-expression comparisons
across actors, and not all intra-expression sequences are available
for every actor, we limit our comparative analysis to image pairs
derived from the intra-expression sequences obtained from the 41
common expressions shared across all actors, as in Fig. 6. Fig. 16
shows the distribution of expression differences. The distribution of
expression differences varies significantly across actors, reinforc-
ing that the same expression can appear differently on different
faces. For instance, the distributions for Actors 1, 6, and 7 exhibit
nearly uniform distributions, whereas the histogram for Actor 8 is
distinctly left-skewed, reflecting diverse perceptual differences.

A.4 Expression Transitions
Additional visualizations of expression differences relative to neu-
tral expressions, covering 60 expression transitions across eight
actors, are presented in Figs. 17-20. Each expression transition ex-
hibits unique transition dynamics, showing significant variation
across different expressions as well as among actors for the same
expression.
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Do you observe a difference between
 the two Facial Expressions?

Trial 32/50

Expression : E007_Neck_Stretch_Brows_Up

Next

Yes No

Fig. 12. Sample study screen from theQuest procedure.

Table 4. Zero-shot evaluation results of Intra vs. Inter Expression sets of
FaceExpressions-70k dataset. The top results for eachmetric and comparison
set are denoted in bold.

Method Intra-Expression Inter-Expression
SROCC PLCC SROCC PLCC

Blendshape Coefficients 0.797 0.772 0.750 0.694

FaRL (ViT-B/16) 0.878 0.855 0.738 0.717

A.5 Application: Using Inter-Expression Differences for
Expression Rendering

We previously obtained the mean inter-expression differences using
the data from the FaceExpressions-70k dataset and plotted them in
Fig. 10. In addition, we also computed the averaged inter-expression
difference for each expression. Based on these values, the expres-
sions were sorted, and the results are presented in Fig. 21, where
expressions are sorted left-to-right according to the inter-expression
differences. This analysis suggests that expressions with the largest
inter-expression differences, like ‘Mouth Open Tongue Out,’ require
minimal effort to render, as they are less likely to be confused with
other expressions. Conversely, expressions like ‘Jaw Clench’ de-
mand more careful rendering to prevent misinterpretation. Also,
from Fig. 21 and in line with expectations, we observe more promi-
nent and distinct expressions are generally rated as having higher
inter-expression differences. In contrast, more subtle expressions
are rated less distinct.

A.6 Additional results on Evaluation Metrics
A.6.1 Scatter Plots. In Table 2-3, we reported the performance of
the existing methods using FaceExpressions-70k dataset. We further
provide the scatter plot of ground truth expression difference scores
vs. the obtained predictions in Fig. 22-24, offering a visual assessment
of the predictive performance.

A.6.2 Comparison of Metric Performance Between Intra- and Inter-
Expression Pairs. Using the two top-performing methods, blend-
shape coefficients and FaRL (both using L1 distance) from Table
3, we conducted further analysis to compare the zero-shot perfor-
mance of the metrics across the intra- and inter-expression splits
of the dataset. The results in Table 4 show that FaRL (ViT-B/16)

outperformed Blendshape Coefficients in intra-expression compar-
isons, achieving higher SROCC and PLCC scores, which indicated
its strength in capturing subtle expression variations. However, for
inter-expression comparisons, the performance of bothmethods was
comparable. Both methods performed better on intra-expression
tasks than inter-expression, with FaRL performing significantly
better for intra-expression comparisons.

A.6.3 Comparison of Metric Performance Across Actors. Using the
same models as in Appendix A.6.2 , we also evaluated their perfor-
mance across different actors to analyze variations. The results in
Fig. 25 indicate that the performance of both FaRL and Blendshape
Coefficients is relatively stable across actors. However, there is a
noticeable peak for one actor in each case, where the Blendshape
Coefficients achieved an SROCC of approximately 0.84, and FaRL
reached around 0.83. Thus, the results suggest that while the models
generally demonstrate consistent performance across actors.
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Fig. 17. Visualization of expression transition dynamics variability across eight actors and fifteen expressions. (Continued)

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



16 • Saha et al.

0 100 200 3000

20

40

60

80

Ex
pr

es
sio

n 
Di

ffe
re

nc
e 

fro
m

 N
eu

tra
l E021_Pressed_Lips_Brows_Down

0 100 200 3000

20

40

60

80

E022_Raise_Inner_Eyebrows

0 100 200 3000

20

40

60

80

E023_Hide_Lips_Look_Up

0 100 200 3000

20

40

60

80

Ex
pr

es
sio

n 
Di

ffe
re

nc
e 

fro
m

 N
eu

tra
l E024_Kiss_Lips_Look_Down

0 100 200 3000

20

40

60

80

E025_Shh

0 100 200 3000

20

40

60

80

E026_Oooo

0 100 200 3000

20

40

60

80

Ex
pr

es
sio

n 
Di

ffe
re

nc
e 

fro
m

 N
eu

tra
l E027_Scrunch_Face_Squeeze_Eyes

0 100 200 3000

20

40

60

80

E028_Scream_Eyebrows_Up

0 100 200 3000

20

40

60

80

E029_Show_All_Teeth

0 100 200 3000

20

40

60

80

Ex
pr

es
sio

n 
Di

ffe
re

nc
e 

fro
m

 N
eu

tra
l E030_Open_Mouth_Wide_Tongue_Up_And_Back

0 100 200 3000

20

40

60

80

E031_Jaw_Open_Lips_Together

0 100 200 3000

20

40

60

80

E032_Jaw_Open_Pull_Lips_In

0 100 200 300
Time (1/90 sec) 

0

20

40

60

80

Ex
pr

es
sio

n 
Di

ffe
re

nc
e 

fro
m

 N
eu

tra
l E033_Jaw_Clench

0 100 200 300
Time (1/90 sec) 

0

20

40

60

80

E034_Jaw_Open_Lips_Pushed_Out

0 100 200 300
Time (1/90 sec) 

0

20

40

60

80

E035_Lips_Together_Pushed_Forward

Actor 1 Actor 2 Actor 3 Actor 4 Actor 5 Actor 6 Actor 7 Actor 8

Fig. 18. Visualization of expression transition dynamics variability across eight actors and fifteen expressions. (Continued)
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Fig. 19. Visualization of expression transition dynamics variability across eight actors and fifteen expressions. (Continued)
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Fig. 20. Visualization of expression transition dynamics variability across eight actors and fifteen expressions.
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Fig. 21. Figure shows a heatmap of averaged inter-specific difference for each expression. The expressions are sorted and averaged inter-expression distances
increase from left to right.
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Fig. 22. Scatter plot of facial expression difference scores versus predictions from basic fidelity and image similarity metrics. The metric names are on the
x-axis, while the objective performance measured using SROCC is reported at the top of each plot.
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Fig. 23. Scatter plot of facial expression difference scores versus zero shot predictions pretrained models/blendshape coefficients using cosine similarity. The
metric names are on the x-axis, while the objective performance (SROCC) is reported at the top of each plot.
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Fig. 24. Scatter plot of facial expression difference scores versus zero shot predictions pretrained models/blendshape coefficients using L1 distance. The metric
names are on the x-axis, while the objective performance (SROCC) is reported at the top of each plot.
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Fig. 25. Zero-shot performance variation of FaRL and Blendshape coefficients based model across actors.
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