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Fig. 1. A sample of the artifacts studied presented in our subjective study. Heatmaps show the scale of each distortion, expressed as Euclidean distance to the
reference. Just-objectionable-difference (JOD) values give an estimate of the perceived magnitude, and can be converted to a probability of selection, shown
below.

In this work we take a novel perception-centered approach to quantify dis-
tortions on 3D geometry of faces, to which humans are particularly sensitive.
We generated a dataset, composed of 100 high-quality and demographically-
balanced face scans. We then subjected these meshes to distortions that cover
relevant use cases in computer graphics, and conducted a large-scale percep-
tual study to subjectively evaluate them. Our dataset consists of over 84,000
quality comparisons, making it the largest ever psychophysical dataset for
geometric distortions. Finally, we demonstrated how our data can be used
for applications like metrics, compression, and level-of-detail rendering.
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1 INTRODUCTION
Subjective quality datasets are a required component to develop
models and algorithms which follow users’ preferences and gen-
erate high quality results. Creating these datasets is a challenging
task, which requires comprehensive understanding of perception,
psychophysics, statistical analysis, and modeling. Although large-
scale perceptual databases such as LIVE [2005] and TID [2015] exist
for image and video applications, many other areas of graphics lack
this support.
In this work, we study the perception of geometric distortions

on faces. Human characters or avatars are ubiquitous in gaming,
entertainment, and social applications. Faithful reproduction of faces
is a particularly important and challenging task [Zhao et al. 2003],
as people are known to be especially sensitive to distortions of facial
features. Although these distortions can be measured objectively,
this does not provide a sense of how users perceive their impact.
Quantifying this is important because perceptually-driven methods
in geometry processing can result in better improved outcomes for
key applications by selecting optimal cost vs. quality tradeoffs.
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We begin our work by creating a novel dataset consisting of
100 high-quality face meshes, taking special care to maintain de-
mographic balance. We proceed to apply a set of carefully chosen
geometric distortions, as outlined in Figure 1. We measure the per-
ceived magnitudes of these artifacts in a large-scale user study,
which gathered over 84,000 subjective judgements. We used modern
statistical methods to convert our study’s results into a standard-
ized database of perceptual quality, which can be used directly for
relevant applications.
We demonstrate some promising use cases for our perceptual

database. First, we evaluate the performance of existing geometry
metrics against our ground-truth data. Next, we propose a simple
data-driven retargeting scheme to augment these metrics. Finally,
we leverage the augmented metrics to perceptually tune algorithms
like mesh compression and level-of-detail rendering (LOD).
Our contributions are as follows:

• A large-scale perceptual database of the visibility of geometric
distortions on faces

• Adataset of meshes representing human faces that follows the
demographic distribution of the US census [2021], ensuring
diversity

• Applications of our database, such as evaluating metrics and
setting perceptuallymeaningful thresholds for tasks likemesh
compression and LOD rendering.

Our perceptual database and benchmark dataset of reference and
distorted faces are made available1 with the goal of encouraging
further research into perceptual aspects of computational geometry.

2 RELATED WORK

2.1 Quality metrics
Visual difference metrics for images or videos are widely avail-
able, from popular metrics like PSNR and SSIM [2010] to complex
metrics that model components of the human visual system like
HDR-VDP [2011] and Fov-Video-VDP [2021]. These image and video
difference metrics operate in “pixel space”, i.e. the objects of com-
parison are the final rendered images, and do not address geometric
distortions on underlying meshes, if present. In contrast to this, it
is often desirable to evaluate the quality of 3D meshes at an earlier
stage of the graphics pipeline, while staying agnostic to illumination
and texture, long before the final image is rendered.
3D mesh quality metrics tackle this problem. A popular geom-

etry metric is Metro [Cignoni et al. 1998], which uses a Haus-
dorff distance as a base component. Metro is mathematically moti-
vated, and does not aim to reproduce perception. In contrast, met-
rics like MSDM [Lavoué et al. 2006] are inspired by perceptually-
motivated image metrics like SSIM, and use mean curvature as
input—informing on the smooth vs. bumpy profile of the studied
object. Local distortions are measured as a difference of Gaussian-
weighted statistics over a local spherical neighborhood, with the
final score being computed through Minkowski pooling. MSDM2
[Lavoué 2011] improves upon the previous version by projecting
the curvature value between two objects and using a multiscale

1https://github.com/facebookresearch/Geo-metric

approach, allowing users to compare meshes with different topolo-
gies. More advanced perceptual models inspired the authors of
DAME [Váša and Rus 2012], which takes visual masking into ac-
count. Following the intuition that distortions introduced to bumpy
areas are less visible than ones added to smooth surfaces, the au-
thors calculate dihedral angles and weigh them accordingly. This
metric is also significantly faster than MSDM, making it more suit-
able for computationally intensive tasks like optimization. Another
fast roughness-based method is FMPD [Wang et al. 2012], which
computes the roughness of each vertex on the test and reference
meshes using local Gaussian curvature, modulated by a power func-
tion to model visual masking. The final score is computed by taking
the difference between normalized surface integrals of each mesh.
This method is unsuitable for low-frequency distortions, as their
impact can be underestimated.
TPDMPW [Feng et al. 2018] proposes a novel spatial pooling

method to assess mesh quality, based on applying a percentile
weighting strategy to existing metrics to emphasize local regions
with severe distortions. Nouri et al. [2016] propose a multi-scale
saliency map as a basis for local statistics on 3D meshes, computing
differences in mean local roughness to model visual masking. Nader
et al. [2015] propose a just-noticeable-difference-based 3D geometry
distortion metric, developed for flat-shaded geometries. Authors
employ a sensitivity paradigm, which models perceptually relevant
parameters like distance and masking. Unfortunately, we were not
able to obtain working implementations of these methods, stopping
us from analyzing them further in this work.

2.2 Perceptual data and scaling
Several metrics described in the previous section are based on ex-
isting perceptual studies of geometric distortion. The DAME [Váša
and Rus 2012] dataset consists of 65 distorted meshes, ≈2,800 per-
ceptual data points. The MSDM/LIRIS [Lavoué et al. 2006] datasets
range from 11-88 meshes, and ≈1,000 data points. In contrast, our
distortion dataset is more than 30 times larger at 2,500 distorted
meshes, and consists of 84,000 measurements. We are inspired by
perceptual data in fields like imaging, where large-scale collection
is ubiquitously used (e.g. the popular TID2013 [Ponomarenko et al.
2015] dataset consists of over 3,000 images, ≈1,500,000 data points).

The output of the 3D geometry metrics in the previous section are
arbitrarily scaled, and cannot be easily contrasted against the results
of a subjective study (with the exception of the work of Nader et
al. [2015]). To make our dataset more useful as a tool for metric
calibration, our subjective data is scaled into units of just objection-
able difference (JOD) [Perez-Ortiz et al. 2019], closely related to the
psychophysical concept of a just noticeable difference. An advantage
of using a JOD scale is that it provides a universal perceptual scale
of quality that can be directly related to the probability a distorted
mesh will be chosen over another in an experiment, as shown in Fig-
ure 2. We expect this type of perceptually-meaningful scale to be
more interpretable and to lend itself to setting useful perceptual
thresholds in applications, as this type of scaling is already popular
for image and video difference metrics [Mantiuk et al. 2011, 2021].
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Fig. 2. This plot shows how pairwise comparison preferences are represented
in just objectionable difference (JOD) scores. For example, if a distorted mesh
A is 1 JOD away from the reference, this represents a 50% decrease in
likelihood of selection, i.e. the reference will be chosen over A 75% of the
time. More detail can be seen in Sec. 3.9 of the work of Mantiuk et al. [2021].

2.3 Face perception and datasets
Several datasets of 3D faces have been presented in the literature,
categorized as real (captured) and synthesized. The former are typi-
cally obtained using 3D scanners. Cao et al. [2014] use a Kinect to
scan 150 individuals and 20 expressions. Due to the low precision of
the depth estimates, the detailed facial geometry such as wrinkles
is lost. Zhang and colleagues [2013] use a Di3D dynamic face cap-
turing system to capture a 3D video database of spontaneous facial
expressions from 41 young adults. Bagdanov et al. [2011] capture 3D
scans from 53 Caucasian adult individuals using the 3dMDFace sys-
tem. Ranjan et al. [2018] released a database including 12 individuals
with 12 extreme expression sequences. To explore lip synchroniza-
tion and realistic facial animation, Cudeiro and colleagues [2019]
released a 3D audio-visual dataset, captured from 12 individuals
with 40 dynamic sequences for each. Zhu et al. [2021] present a
large-scale detailed 3D face dataset, captured from 938 Asian partic-
ipants, each with 20 specific expressions. Although these datasets
provide good coverage over age and gender, they rarely take other
demographic factors into consideration. Yin et at. [2006] aims to cap-
ture expressions of 100 subjects from several demographic groups,
providing 2500 unique face meshes with high-quality textures and
low-detail geometry. In a follow-up study [2008], the authors add
time-varying data, providing 606 3D expression sequences with 100
frames each.

Unlike captured geometry, synthetic datasets are often generated
using a 3DMorphableModel (3DMM) [1999] using either a statistical
appearance model [Guo et al. 2018; Paysan et al. 2009], FACS [2011],
or inverse rendering [Booth et al. 2018]. Such datasets are often
orders of magnitude larger, and can cover more granular data groups.
However, reconstructed faces often suffer from loss of detail, making
them less accurate representations of reality. Our synthetic data
is based on high-resolution scans gathered using a 3dMD scanner.
In addition, our population distribution aims to reflect diverse US
demographics, based on the Census [2021], which ensures some
representative data is present for each group.

3 SYNTHETIC DATASET
To measure the perceptual effects of distortions on 3D facial geom-
etry, we first need to prepare a representative benchmark dataset.
We do this by leveraging a large-scale private collection of human
head scans. Although we are not able to use these proprietary scans
in this work, we draw on this database to generate a synthetic set
which blends the original scans into new meshes, while maintaining
desirable properties like high quality and demographic balance.

3.1 Non-public dataset
Proprietary head meshes were gathered using a commercially avail-
able high-quality 3D scanner: 3dMD Ltd’s static 12-viewpoint 3dMD-
head scanning system. This is a top of the line scanner which in-
cludes 36 machine vision cameras in 12 Modular Camera Units (or
viewpoints), optimized specifically for full head and ear detail cap-
ture. The system automatically generates a continuous 3D textured
surface mesh with variable resolution (typically around 180k ver-
tices). The 3dMDvultus Software is then used to add 3D landmarks
to the meshes. The scanned objects preserve the original scale, with
1 unit corresponding to 1 millimeter. According to 3dMD 2, this
type of system has a linear accuracy range of 0.2mm or better on a
frame-by-frame basis.
A set of 1,417 heads were scanned. The raw scanned meshes

can contain sampling and reconstruction artifacts. To drive direct
comparisons and maintain standardization, they are registered to
a custom artist-generated template mesh of head and neck geome-
try consisting of 7,306 vertices, which was originally designed for
expression details. Each mesh in the dataset and the registration
target were annotated with 6 landmarks. R3dS Wrap software3 was
used to register all original scans to the template, aligned using an
Orthogonal Procrustes model [1966].

3.2 Public synthetic heads generation
We proceed to leverage the proprietary dataset in order to create
a public dataset of 100 synthetic faces, which maintains desirable
properties such as high quality and demographic distribution. Sim-
ilarly to Dai et al. [2019], we use a principal component model
(PCA) to generate our meshes [Blanz and Vetter 1999]. Given 𝑀
pre-registered meshes, each with 𝑁 vertices and the same connec-
tivity, we can denote each individual scan as 𝑥𝑖 ∈ R3𝑁 . We can
then compute the mean shape over the set 𝑥 , and recenter each
subject around this value 𝑥𝑖 = 𝑥𝑖 − 𝑥 , with the new set of shapes
𝑋 ∈ R𝑀×3𝑁 . Since in this case 𝑀 << 3𝑁 , the covariance matrix
𝑋
𝑇
𝑋 is rank deficient.
We eigen-decompose the covariance matrix, from which we get

the basis as well as the corresponding eigenvalues, which we assume
are sorted in descending order of magnitude. We select the top 𝐾
eigenvalues and their corresponding basis vectors 𝑏 = {𝑏1, ..., 𝑏𝐾 },
where 𝑏𝑘 ∈ R3𝑁 , as principal components for our statistical model.
We selected 𝐾 = 196which explains 99% of the variance in the input
dataset.
To generate synthetic heads, we blend 𝐿 registered meshes. We

begin by inversely solving the coefficients for each registered head
2https://3dmd.com/products/
3https://www.russian3dscanner.com/
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Fig. 3. Comparison of the demographic distribution showing US census
2021 [2021] (L) and our dataset (R). Note that we ensure a minimum of one
face is present for each demographic group and gender.

𝑒𝑖 , where 𝑒𝑖 ∈ R𝐾 refers to the coefficient vector of 𝑥𝑖 over 𝑏. We
generate a new synthetic set of coefficients 𝑒 =

∑𝐿
𝑖=1𝑤𝑖𝑒𝑖 , where

𝑤𝑖 ≥ 0, and
∑𝐿
𝑖=1𝑤𝑖 = 1. The blended coefficients 𝑒 are used to

generate a new blended mesh 𝑥 = 𝑏𝑒 + 𝑥 . To prevent shading arti-
facts, we generate a denser version of the blended mesh through
subdivision by employing two applications of the Loop Subdivision
Algorithm [1987], resulting in 116593 vertices per head.

Our PCAmodel was generated using 3D geometry from the entire
private dataset of 1,417 participants (679F, 738M, aged between 18
and 65). For each of the 100 output synthetic heads, we blended
𝐿 = 3 unique meshes (a total of 300), with the ratio set to a simple
average𝑤𝑠 = 1/3,∀𝑠 . These trios were set to belong in the same sex
and race demographic category according to the US Census [2021],
as shown in Figure 3.

3.3 Distortion Dataset
To study the perception of artifacts on geometry, we needed to
generate a set of distorted meshes. We use the synthetic dataset
composed of 100 heads described in Section 3.2 as our base. We
augment this data by modifying it with three selected effects: noise
(Section 3.3.1), simplification (Section 3.3.2), and smoothing (Sec-
tion 3.3.3), as these artifacts are ubiquitous in applications [Botsch
et al. 2007]. The parameters of each distortion were carefully se-
lected based on perceptual and quantitative data. A sample set of
distorted meshes from our dataset can be seen in Figure 6.

3.3.1 Noise. The first artifact we examine is noise, which is a com-
mon distortion that can stem from many sources in application.
Noise can be parametrized by magnitude (how large the deviations
are) and frequency (the size of the distortions relative to the mesh).
As we want our dataset to be application-agnostic, we chose to
add synthetic noise rather than noise stemming from a particular
source. We use Perlin noise [2002] due to its simplicity, and because
both frequency and magnitude can be easily controlled. We used
a three-dimensional noise implementation provided in the SideFX
Houdini4 software suite.
Despite the flexibility of the Perlin noise framework, we need

to select a discrete number of frequencies and magnitudes to eval-
uate in our study. To do this, we begin by searching for an upper
bound on the noise frequency. In practice, high-frequency noise
often stems from compression algorithms, and is especially notable
in methods using direct coordinate quantization of vertices [Deering
4https://www.sidefx.com/

Compressed mesh Noise optimization result

Fig. 4. Comparison of a compressed sphere (L) and the optimized noisy
sphere match (R), which mimics the characteristics of the compression
distortion using Perlin noise.

1995]. To estimate the frequency profile of this type of noise, we
run an optimization which approximates a compressed sphere with
a sphere distorted using Perlin noise at varying frequencies. Com-
pression is done using the open-source Draco library5. As meshes
typically consist of locally varying vertex densities, we run several
comparisons on spheres with different, but uniform vertex density.
Simple cost functions like RMSE do not converge, as features caused
by compression and noise do not coincide spatially. Instead, we
crafted a custom cost function based on the variance of Gaussian
curvature (see details in the supplemental material). A result of this
process is shown in Figure 4. We found that Perlin noise ranging
in frequency from 0.5-2 cycles/mm corresponded to plausible fits
across all examined densities. We proceed to set our frequency up-
per bound to 2 cycles/mm. A lower bound of 0.01 cycles/mm was
selected manually based on a comparison with the spectral compres-
sion algorithm presented by Sorkine and colleagues [2003]. Their
work specifically aims at preferentially distorting lower frequencies
of a mesh, which are considered by the authors to be less visible.
We proceed to interpolate between these two bounds in log space to
obtain the four sample points used in our experiment (0.01, 0.06, 0.34,
and 2 cycles/mm). A sample set of each frequency and amplitude of
noise can be seen in Figure 6.
Next, we need to set the noise amplitudes. Our aim is to select

amplitudes that are neither obvious nor invisible, as either would
yield only trivial data in the study. To begin, we manually selected
a noise amplitude that is clearly visible. We then generate 101 inter-
mediary values by linearly interpolating between this value and the
noise-free baseline. Next, we ran a small-scale pilot user study (N=2)
for each noise frequency. The experimental setup was identical to
the one used in our main study (see Section 4.2). We used a Mini-
mum Expected Entropy Staircase experiment procedure [Saunders
and Backus 2006], as implemented in Psychtoolbox6, to find the
amplitude that corresponds to the perceptual threshold (i.e. 1 just-
objectionable-difference, JOD, away from the reference, as explained
in Section 4.4). In addition, the staircase procedure generates a psy-
chometric curve (shown in Figure 5). We observe that the curve
saturates at approximately 3 JODs. We sample four linearly spaced
points between this saturation point and the reference, which guar-
antees a perceptually significant range of values will be presented

5https://google.github.io/draco/
6http://psychtoolbox.org/
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Fig. 5. A pilot experiment was used to set the distortion magnitudes for our
study. We show the user’s responses converging towards the threshold in a
staircase-type procedure on the right. Blue circles denote a correct answer,
while pink ones show mistakes. On the left, a psychometric curve (contin-
uous line) is fitted to the data, with a dashed line marking the threshold
value of 1 JOD.

.

to participants. In total, this brings the number of noise trials to 16
(as each frequency is studied at four unique amplitude levels).

3.3.2 Simplification. The next effect we explored was simplification,
which is relevant in the context of key applications like decimation,
or level-of-detail rendering algorithms.
To select magnitudes of distortion, we followed the simple rule-

of-thumb used in many LOD algorithms—reducing triangle count
by half at every step [Luebke et al. 2003]. Next, we performed a
staircase experiment identical to the one described in Section 3.3.1.
We found that a single reduction level (i.e. 50%) was well-below the
perceptual threshold. As a consequence, we selected the first level
of simplification as 25%, and followed the halving rule to set four
magnitudes of simplification (25%, 12.5%, 6.25%, and 3.125%).

3.3.3 Smoothing. The third and final artifact we explored was
smoothing. In applications, it can stem from simplification, errors
duringmesh reconstruction,mesh decimation, volume-based remesh-
ing algorithms, etc. To simulate different magnitudes of smoothing,
we employed a Laplacian Smoothing algorithm [Witkin 1987] with
fixed boundaries, as implemented in SideFX Houdini. The default
value of 𝜆 = 0.5 was used.

In order to select the magnitude of smoothing, we once again
employed a staircase pilot experiment (identical to Section 3.3.1). The
expert-led experiment showed even a single application of Laplacian
smoothing as above the threshold of noticeability. However, unlike
other distortions, further testing with naïve users found they were
significantly less sensitive to the artifact, which led us to set the first
level of magnitude at 2 repetitions. As more aggressive smoothing
is needed to produce changes on a smoother surface, we set the
remaining values based on extensive pilot experiments. The final
values used in our main study are 2, 6, 12, 20 repetitions of Laplacian
smoothing.

3.3.4 Overview. Webeginwith 100 referencemeshes of faces, which
are distorted using 6 different types of artifacts (4 types of noise,
smoothing and simplification). Each artifact has 4 levels of magni-
tude, resulting in 24 distortedmeshes per reference, or 2400 distorted

Table 1. Parameters of the Experimental Conditions

Distortion Magnitude
measure

Magnitude
Level1 Level2 Level3 Level4

Noise - lowest freq. amplitude 5.00 8.33 11.66 15.00
Noise - low freq. amplitude 0.21 0.35 0.49 0.63
Noise - high freq. amplitude 0.0675 0.1125 0.1575 0.2025

Noise - highest freq. amplitude 0.0740 0.1233 0.1727 0.222

Simplification % of remaining
triangles 25.0 12.5 6.25 3.125

Smoothing # iterations 2 6 12 20

meshes in total. A breakdown of the exact distortions used can be
seen in Table 1.

4 USER STUDY
In order to gather perceptual data, we ran a large-scale user study,
detailed in this section. This is the largest psychophysical collection
of geometric distortions ever obtained, and is composed of 84,000
subjective comparisons.

4.1 Participants
In observance of restrictions for in-person work during the COVID
pandemic, this study was conducted remotely. 50 male and 50 female
paid participants were recruited (aged between 18 and 55 years). Our
study received ethical approval through a third party institutional
review board7, and each of the 100 paid participants signed an
informed consent form. Experimental output was anonymized.

Each experiment session consisted of 280 randomly selected trials
over a batch of 10 unique heads. Our dataset of 100 synthetic head
meshes was randomly split into 10 batches of 10 meshes each, with
10 participants assigned to each batch. In pilots, participants needed
approximately 10 seconds per trial, resulting in an estimated 47
minutes required to finish the main portion of each session, which
was deemed adequate to avoid fatigue. Each participant completed
3 experimental sessions each on different days.

4.2 Stimulus rendering
Our experiment aims to measure the perceived strength of distor-
tions, but additional factors like illumination and texture can be
expected to influence the result [O’Shea et al. 2008; Serrano et al.
2021]). As there are too many possible configurations of texture and
illumination, we choose to perform our experiment using represen-
tative conditions that are expected to maximize the subjects’ overall
sensitivity, following guidelines set in the literature [Lavoué et al.
2016; Rogowitz and Rushmeier 2001].We use a distant top-right light
source, mimicking natural environmental conditions [O’Shea et al.
2008; Sun and Perona 1998]. Because this can leave the lower portion
of the head unlit, we add a lower intensity light from the bottom-left
direction, avoiding unnaturally strong shadows. We do not use any
texture, with the heads rendered with a single uniform neutral gray
color. This is expected to maximize sensitivity to distortions, as
overlapping signals from texture can cause masking [Ferwerda et al.
1997].

7Link to be added after acceptance
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Our experimental software was implemented using the Unity
game engine8 and rendered in real-time on the participants’ machine
using pre-processed meshes. Participants were allowed to freely
rotate the models around the vertical axis, and were instructed to
make a holistic decision based on the distortions on the entire mesh.
All three meshes rotated in synchrony to enable direct comparisons.
When no participant interaction was detected for a few seconds, the
meshes began to slowly rotate, as pilot studies suggested this helps
users detect distortions.
In addition to the artifacts described in Section 3.3, we decided

to study two additional ancillary variables. The first is distance.
Although distance is known to play a large role in the perception of
visual artifacts [Daly 1992; Ye et al. 2019], it is not modeled by most
existing geometry metrics. We study two distance conditions, "close"
and "far" (subtending approx. 18 and 9 visual degrees respectively,
assuming a standard distance of 2.5 picture heights away from
the display as instructed in training). The second variable relates
to human sensitivity to faces, in contrast to other objects. Prior
art points to humans being especially sensitive to deformations on
faces [Zhao et al. 2003], and evidence suggests a higher order holistic
process takes place. In order to quantify the sensitivity differential
between faces and general objects, we need to compare identical
objects, but have one object be perceived as a face, while the other is
not. This led us to the influential Thatcher Illusion [Thompson 1980],
which demonstrated that the recognition of significant distortions of
a face, such as rotating the eyes and mouth 180◦, can go undetected
when the face is presented upside-down. This effect has previously
been successfully exploited in the computer graphics community to
increase a subjects’ sensitivity to colormap calibration [Kindlmann
et al. 2002], where users presented with upside-down faces were
found to be significantly less sensitive to distortion. We follow this
template, and present our experimental subjects with two conditions:
"normal" and "flipped", where the latter case shows the face upside-
down. In this way, for each condition described in Section 3.3, we
study four cases (close/up, close/flipped, far/up, and far/flipped).

4.3 Experimental procedure
We chose to employ a two-alternative forced choice (2AFC) pro-
cedure, as this is considered the most accurate way to measure
threshold distortion visibility [Perez-Ortiz et al. 2019]. A sample
trial of our study is shown in Fig. 7. The participant is presented with
an unmodified reference face, selected from the synthetic dataset
described in Section 3.2, and two variations subject to a the same
artifact at different magnitudes (as described in Section 3.3). The
subject is prompted to select the head that is less distorted compared
to the reference by pressing on the left or right arrow keys.
To avoid obvious comparisons which do not add information to

the set, only distortion magnitudes of up to 2 steps away from each
other were compared [Perez-Ortiz et al. 2019], as shown in Table 2.
Before beginning each experimental session the subjects were

trained. A representative subset of comparisons were shown contain-
ing all distortion types with exaggerated magnitudes, simplifying
the task while avoiding over-training. During training, participants
were given feedback on whether their answer was accurate to help

8https://unity.com/

Table 2. Comparison Matrix

Reference Level 1 Level 2 Level 3 Level 4
Reference ✓ ✓
Level 1 ✓ ✓ ✓
Level 2 ✓ ✓ ✓ ✓
Level 3 ✓ ✓ ✓
Level 4 ✓ ✓

Fig. 7. This is a screenshot of the software used in our subjective study. The
observer is presented with 3 heads at a time: a reference placed in the center,
and two distorted heads randomly assigned to either side. The task is to
pick the head that is less distorted in relation to the reference by pressing
the left or right arrow keys.

accustom them to the experimental procedure. A separate set of
meshes that was not repeated in the main study was used for train-
ing, and training results were discarded from further analysis.
Participants performed the experiment at home, and were in-

structed to sit comfortably at an approximate distance of 2 to 3
picture heights from their display. Breaks were allowed during the
study, and it was possible to pause or exit the experiment and pick
progress up at a later point if necessary. In order to avoid users
getting stuck on difficult comparisons, we implemented a 30 sec-
ond timer on the bottom right, and instructed participants to try
not to exceed this time limit per trial, although this rule was not
enforced. A minimum trial time of 2 seconds was enforced in order
to avoid accidental responses. Once a session was completed, the
anonymized results were automatically uploaded to our servers.

4.4 Data analysis
To allow for uniform comparisons across distortion types and mag-
nitudes, we convert users’ 2AFC responses using perceptual scaling
(see Section 2.2). To do this, we employ the software developed by
Perez-Ortiz et al. [2019] for each of the studied distortions. This
results in a per-artifact JOD scale, which can be directly used for
perceptually meaningful comparisons and predictions. This method
also allows for automatic statistical outlier removal, which flagged
7 participants whose results were discarded from further analysis.
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Fig. 8. This figure shows the results of our subjective study. Each plot represents one of six distortions we measured. Every line correspond to a separate
condition. Note the strong impact of distance for the three highest noise frequencies and simplification. Please see our analysis in Section 5.

5 EXPERIMENT RESULTS
The results of our experiment are shown in Figure 8. A separate plot
is presented for each of the six distortions studied (4 frequencies
of noise, simplification and smoothing). On the horizontal axis, we
show progressively larger magnitudes of distortion. On the vertical
axis, we show a JOD-scale distance from the reference. The four lines
represent the results of each combination of ancillary conditions
(far/near, normal/flipped). Vertical bars show 95% confidence inter-
vals, calculated using bootstrapping, as described by Perez-Ortiz et
al. [2019]. Each plot shows the mean results across all participants.
Below, we discuss the results for each distortion.

Noise. The results in the first four plots (top row and bottom left)
correspond to the distortion caused by noise. First, we can focus
on the top left plot, showing the lowest frequency. Note that, as
expected, the JOD distance from the reference increases gradually
as higher magnitudes of distortion are examined. In an effect only
seen at the lowest frequency, users were more sensitive to the far
conditions. We theorize this is due to the human visual system
being less sensitive to stimuli at both very low and very high fre-
quencies [Campbell and Robson 1968]. As the pattern moves away
from the viewer, it subtends a smaller area resulting in an increase
in perceived frequency as experienced by the observer, and con-
sequently an increase in sensitivity for this distortion. This effect
was previously exploited by Oliva and colleagues in their work on
"Hybrid Images" [2006]. As the noise frequency is increased in the
subsequent plots (top middle, top right, and bottom left), we see the
near and far conditions reverse, making the far condition less visible

than near, with the separation becoming more apparent at higher
frequencies. This follows the same insight, with sensitivity falling
off for high frequencies which appear even higher to the observer
due to increased distance, resulting in lowered sensitivity.

Simplification. The bottommiddle plot shows the result for simpli-
fication. As expected, a significant difference between the close/far
conditions is observed. This data follows the perceptual insight lever-
aged for popular level-of-detail rendering methods, which simplify
meshes that lie further from the observer.

Smoothing. The result is shown in the bottom right plot. Smooth-
ing was much less visible to our observers than the other distortions,
with a maximum mean JOD distance of only -0.79. This is likely
due to the localized nature of the distortion, which is only visible
in areas of the mesh that contain high frequencies. In addition, our
dataset of relatively smooth head meshes may also have led to more
difficult comparisons.

Overview. We generated a perceptually meaningful scale of dis-
tortion for each of six studied artifacts. The effect of distance was
strongly present in all conditions, either enhancing or obscuring
the visibility of distortions following expected relations from con-
trast sensitivity models [Nader et al. 2015]. Conversely, the nor-
mal/flipped conditions did not impact responses. We hypothesize
this is due to the unlimited length of presentation, which may have
allowed participants to mentally cancel the effect of presenting a
face upside-down [Lewis 2001]. We confirm these findings through a
statistical analysis of the results using the effect size d [David 1963]

ACM Trans. Graph., Vol. 41, No. 6, Article 215. Publication date: December 2022.



Geo-metric: A Perceptual Dataset of Distortions on Faces • 215:9

(see supplementary). As a consequence, in the following sections
results are averaged over the normal/flipped conditions.

6 DISTORTION METRIC ANALYSIS
We begin by analyzing the performance of popular metrics on 3D
geometry: RMS, Metro [Cignoni et al. 1998], DAME [Váša and Rus
2012], MSDM [Lavoué et al. 2006], MSDM2 [Lavoué 2011] and
FMPD [Wang et al. 2012].

As artifacts differ significantly in their subjective characteristics,
it is unlikely that any metric is able to successfully explain the entire
dataset simultaneously. We confirm this by calculating Pearson’s
Linear Correlation Coefficient (PLCC) and Spearman’s Rank Corre-
lation Coefficient (SROCC) compared to the results of our subjective
study (see supplementary).

In order to obtain more targeted performance indicators, we pro-
ceed to study the correlation of each metric to each of the studied
distortions separately. DAME and MSDM are excluded from the
simplification trials, as these metrics require vertex-to-vertex corre-
spondence.We begin the analysis using only the results of the "close"
condition, shown in Table 3. FMPD shows the best performance for
noise, with top PLCC results in every case. Metro, MSDM, and RMS
obtain the best SROCC for low, high, and highest frequency noise,
respectively. Surprisingly, the simplest metric RMS performs best
for simplification and smoothing, with the latter artifact having the
worst overall scores across all metrics.

Table 4 shows the same analysis performed for the "close" and "far"
conditions together. As none of the metrics model distance, which is
a significant factor to the subjective judgements, performance drops
happen for most comparisons highlighting the need for metrics that
incorporate this perceptual factor. DAME now has the best PLCC
performance for lowest-frequency noise, while FMPD maintains
best performance for low, high and highest-frequency noise. RMS
remains the best PLCC performing metric for simplification and
smoothing.

7 APPLICATIONS
In this section, we show some practical applications that demon-
strate the utility of our perceptual dataset.

7.1 Retargeting metrics
We build on the analysis of geometry metrics performed in Section 6
by retargeting these methods to fit our perceptual data. These met-
rics produce results in different, non-perceptual units. This makes it
difficult to use their output to perform commonly encountered en-
gineering tasks, such as setting meaningful thresholds or stopping
criteria, as the output values have no perceptual reference. Typically,
this type of parameter can be set through experiment, but relating
the results of an experiment to the metric output can be challenging,
and thresholds often do not generalize beyond the original results.
This highlights the importance of perceptually scaled data, such as
our dataset, to achieve practical tasks. We give a concrete example
of this scenario for mesh compression in Section 7.2.
We also observe that distance, despite being a major perceptual

factor to the visibility of artifacts, is not modeled by any of the
examined metrics, which produce identical responses regardless of

the users’ position in relation to the object. We explore an exten-
sion of metrics to distance using our dataset for a LOD application
in Section 7.3.

New perceptually-aware metrics for geometry distortion could be
developed to address the points above, but generating such a metric
is beyond the scope of this work. We simplify the problem by instead
retargeting the responses of the metrics we examined in Section 6,
allowing us to inject some perceptual insights. After experimenting
with different functional forms (see supplementary material), we
observed that an empirical remapping of the metrics’ output to
the perceptually-motivated JOD units by applying scaling in the
form 𝑌 = 𝑎 · 𝑋𝑏 produces the best results of all examined models.
This produced good fits of metrics’ responses to our subjective
data for a single distance, where 𝑋 is a raw metric response, 𝑌 is
metric retargeted to the JOD scale, and 𝑎 and 𝑏 are optimized fitting
parameters.
We also explicitly incorporate distance as a factor to the metric

responses. We do this by modulating the results using the ratio of
visual angles subtended by the object. We set the size of the stimuli
shown in the close condition of our study as the reference 𝛼 , and
the current size of the object as 𝛽 . We then modify our retargeting
formula to 𝑌 =

𝛽
𝛼 ·𝑎 ·𝑋𝑏 . As is often practical in application, we can

reformulate this to use distance relative to the observer. We define
𝑚𝑒 as the maximum extent of the object (half the maximum size of
the bounding box), 𝑑1 as the distance corresponding to the default
visual angle 𝛼 , and 𝑑2 as the distance for which we are querying
(schematized in Figure 9). This results in:

𝑌 =
arctan(𝑚𝑒/𝑑2)
arctan(𝑚𝑒/𝑑1)

· 𝑎 · 𝑋𝑏 (1)

The values of the parameters 𝑎 and 𝑏 are fitted to the dataset, mini-
mizing error between the remapped metric response and JOD values
found in our experiment for each stimulus. In addition, we add a
boundary condition so that large distances (𝛼 < 0.11◦) have a score
of 0 JOD as distortions are not visible at that scale. Based on the
conclusions of Section 6, we perform this fitting separately for each
metric and distortion type. The values of the fitted parameters 𝑎
and 𝑏 can be found in Table 3 of the supplemental material.
Through Eq. 1, we can use legacy metrics to make predictions

that account for distance, and approximate metric output to the
JOD units used in our study. In the following sections, we apply a
retargeted version of FMPD to compression and LOD rendering.

d1

d2

camera
me

α β

Fig. 9. The trigonometric relationship between visual angle, size and dis-
tance from the observer used in our model.
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Table 3. Correlation Coefficients Computed for Each Distortion Type Separately (for Close Heads)

Noise
Lowest freq. Low freq. High freq. Highest freq. Simplification Smoothing

PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC
METRO -0.83786 -0.85531 -0.85159 -0.8886 -0.80548 -0.85085 -0.73139 -0.76049 -0.81164 -0.80853 -0.54 -0.50158
DAME -0.83952 -0.86269 -0.83788 -0.87335 -0.78928 -0.81867 -0.72004 -0.74596 NA NA -0.54911 -0.53409
FMPD -0.85387 -0.87492 -0.87582 -0.87283 -0.83075 -0.8595 -0.73603 -0.75207 -0.82596 -0.7967 -0.43741 -0.4882
MSDM -0.81545 -0.86174 -0.75198 -0.87583 -0.71318 -0.83951 -0.61431 -0.77115 NA NA -0.50298 -0.52468
MSDM2 -0.7756 -0.86293 -0.8146 -0.88512 -0.76524 -0.84845 -0.64805 -0.75457 -0.66364 -0.80923 -0.55012 -0.52745
RMS -0.8377 -0.85725 -0.85082 -0.88765 -0.80674 -0.87288 -0.72701 -0.73285 -0.82752 -0.79958 -0.55147 -0.54268

Table 4. Correlation Coefficients Computed for Each Distortion Type Separately (for Both Distances)

Noise
Lowest freq. Low freq. High freq. Highest freq. Simplification Smoothing

PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC
METRO -0.84552 -0.87899 -0.80067 -0.83565 -0.64015 -0.65671 -0.56912 -0.58581 -0.71671 -0.70817 -0.47613 -0.44695
DAME -0.8503 -0.88571 -0.78221 -0.80956 -0.63214 -0.6478 -0.55242 -0.55489 NA NA -0.47313 -0.46808
FMPD -0.83415 -0.87444 -0.8242 -0.82314 -0.66238 -0.66313 -0.57095 -0.57861 -0.73287 -0.70548 -0.3836 -0.45222
MSDM -0.81724 -0.86826 -0.70719 -0.818 -0.56928 -0.66113 -0.47542 -0.58426 NA NA -0.43856 -0.4754
MSDM2 -0.77799 -0.86893 -0.76497 -0.8251 -0.61003 -0.65798 -0.50469 -0.59126 -0.57988 -0.71234 -0.47943 -0.46324
RMS -0.84133 -0.86611 -0.79922 -0.83484 -0.64533 -0.67854 -0.56143 -0.54794 -0.73604 -0.70532 -0.49102 -0.4832
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Fig. 10. We retarget FMPD as described in Section 7.1 to assess distortions
caused by compression algorithms. Orange and blue lines represent the
results of our study for the close and far conditions, while yellow and purple
lines correspond to the remapped output of FMPD.

7.2 Perceptually bound compression
When employing mesh bitrate compression, a cost vs. quality trade-
off is present—the goal is to compress at the lowest rate that presents
acceptable subjective quality. To test the performance of the metric
retargeting performed in Section 7.1, we ran a validation study.

Stimuli. Although our main study consisted only of human faces,
we wanted to explore the hypothesis that our learnings can gen-
eralize by selecting a varied set of test cases. These consisted of
shapes used by Lavoué et al. [2006] (venus, armadillo, rocker), as
well as one face from our dataset. The former present challenges, as

these shapes are very different from those we studied. In particular,
noisy references, such as the armadillo mesh, can result in reduced
visibility of artifacts due to masking, which was not modeled in
our work. For each object, we generate a progression of quantized
meshes using the Draco library. Note that some low-compression-
factor meshes were excluded during piloting, as they were deemed
visually identical to the reference.

Procedure. We used a setup identical to that described in our main
experiment (Section 4.3), with 8 additional participants. Participants’
responses were converted to JOD units using the method of Perez-
Ortiz et al. [2019]. We compared these values to the retargeted
version of the FMPD metric, shown in Figure 10.

Results. The results of our validation can be seen in Figure 11.
Note that, unlike traditional metrics, our retargeted metric’s output
can be directly compared to the results of the subjective study.
The metric matches the perceptual outcome well—with identical
selections for 3 out of 4 meshes at a threshold level of 1 JOD.

7.3 Perceptually driven automatic LOD
Level-of-detail rendering is a popular real-time graphics technique,
swapping out meshes for lower complexity alternatives when ob-
jects are distant in order to improve performance. Despite its ubiq-
uity, most practical implementations rely on distance swapping
criteria set manually by artists. Traditional geometry metrics such
as those examined in Section 6 are not distance-aware, prevent-
ing their use for this application. Conversely, a metric trained on
our distance-aware data could estimate visibility based on distance,
generating an automated quality-cost trade-off prediction. To ex-
emplify this, we use a retargetted version of FMPD (as described
in Section 7.1).
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Fig. 11. A look at our compression application. Each column represents a mesh, encoded with a static number of bits per coordinate. The rightmost column
shows the results of our validation experiment (Section 7.2) contrasted to the output of the retargeted FMPD metric, also shown under each mesh. Blue
and orange separators denote the perceptual threshold, set to 1 JOD (corresponding to a 75% probability of preference), according to the study (blue) and
metric (orange). Note that in contrast to our work, setting a meaningful threshold in arbitrary metric units is a non-trivial task. Please zoom in to observe the
distortions.

For a given mesh 𝐿0, we begin by pre-computing a set of simpli-
fied versions 𝐿1..𝑁 . We then solve an inverse problem, finding the
distance 𝑑𝑖 at which the difference between the reference and each
of the simplified meshes lies beyond a given perceptual threshold
value 𝛿 at each step, i.e. 𝑑𝑖 = argmin𝑑 ( |𝐿0 − 𝐿𝑖 |d ≤ 𝑖𝛿).

We compare the prediction of our retargeted metric on a head
from our dataset to a manual setting chosen by an artist in Unity,
who was instructed to pick the earliest point that avoided visible
artifacts. We show the results of our method in Figure 12. Note
that our model is built using side-by-side comparisons, while the
visibility of popping artifacts in an LOD setting is more similar to
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Fig. 12. Our retargeted metric can be used to automatically predict the
distance at which an LOD swap should occur. Here, we compare our estimate
to a selection made by an artist instructed to avoid visible popping artifacts
(left) and present the mesh used for the evaluation (right).

a flicker comparison, which is expected to be significantly more
sensitive [Simons and Rensink 2005]. As a result, using the same
threshold of 1 JOD as Section 7.2 leads to swaps at lower distances
than those selected by the artist. However, a lower threshold of
0.7 JOD produces a similar swapping profile. A perceptual data-
driven model like the one presented here can be used by artists to
automatically set an application-wide subjective threshold, reducing
manual labor in selecting LOD settings.

8 CONCLUSIONS
In this work, we explore the perceptual impact of distortions on
3D geometry. We created a novel synthetic dataset, consisting of
100 head scans which mimic the demographic distribution of the
US. We identified geometric distortions of interest to relevant ap-
plications, and ran carefully crafted pilot studies and numerical
simulations to set the appropriate parameters for our perceptual
study. We gathered a large-scale dataset of subjective responses
for geometric distortion, including relevant perceptual parameters,
such as distance. We used the results of our study to analyze the
performance of geometric metrics. We also explored applications of
our dataset to use cases like metric retargeting, automating stopping
criteria for mesh compression, and LOD rendering.

Limitations and future work. Althoughwe collected a large dataset
of perceptual data on geometry, we were only able to sample a lim-
ited number of parameters and modalities for each distortion. In
particular, it would be interesting to further explore the impact of
distance on perception by sampling more in this dimension. Our
dataset was composed of meshes representing human faces, which
we measured in a normal and flipped orientation with the intent
of comparing the perceptual impact of human sensitivity to faces.
Although we found no difference in sensitivity between the two,
it would be interesting to add a time-limited component to these
trials to make it more difficult for users to mentally invert the rota-
tion. Early piloting of our study with meshes representing arbitrary
objects indicates that increased sensitivity for faces is present, and
quantifying this numerically could generate valuable insights. Fur-
ther, althoughmasking is known to be a major effect for the visibility
of perceptual artifacts, we did not explore it in this study. Notably,
our study was done on meshes without texture, which is a likely

source of masking for the distortions studied in this work. Future
efforts should be made to collect psychophysical data on geometric
distortions while actively controlling for masking due to properties
of the reference mesh and texture.
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