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Abstract—We present HoloQA, a new state-of-the-art Full
Reference Video Quality Assessment (VQA) model that was
designed using principles of visual neuroscience, information
theory, and self-supervised deep learning to accurately predict the
quality of rendered digital human avatars in Virtual Reality (VR)
and Augmented Reality (AR) systems. The growing adoption of
VR/AR applications that aim to transmit digital human avatars
over bandwidth-limited video networks has driven the need for
VQA algorithms that better account for the kinds of distortions
that reduce the quality of rendered and viewed avatars. As we
will show, standard VQA models often fail to capture distortions
unique to the rendering, transmission, and compression of videos
containing human avatars. Towards solving this difficult problem,
we adopt a multi-level Mixture-of-Experts approach. This involves
computing distortion-aware perceptual features and high-level
content-aware deep features that capture semantic attributes of
human body avatars. The high-level features are computed using
a self-supervised, pre-trained deep learning network. We show
that HoloQA is able to achieve state-of-the-art performance on
the recently introduced LIVE-Meta Rendered Human Avatar
VQA database, demonstrating its efficacy in predicting the
quality of rendered human avatars in VR. Furthermore, we
demonstrate the competitive performance of HoloQA on other
digital human avatar databases and on another synthetically
generated video quality use case: cloud gaming. The code
associated with this work will be made available on GitHub.

Index Terms—Virtual Reality, Augmented Reality, Rendered
Human Avatars, Full Reference VQA, Video Quality Assessment

I. INTRODUCTION

N recent years, there have been significant strides in head-
mounted displays (HMDs) and virtual/augmented reality
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(VR/AR) technologies. These advances have caught the at-
tention of millions of consumers, researchers in academia,
and large technology companies like Meta Platforms, Google,
Apple, and Microsoft. Substantial investments are being made
in this burgeoning industry, driven by expectations for future
increases in the adoption of VR and AR. According to a report
by Grand View Research [1], the global VR/AR market size
was estimated at $59.96 Billion in 2022 and is expected to
grow at a compound annualized growth rate of 27.5% from
2023 to 2030.

VR/AR technologies have already evolved rapidly with
a focus on creating immersive, realistic, and comfortable
experiences. Today, VR/AR technologies are used in domains
such as virtual telepresence, online collaboration, cloud gam-
ing and streaming media, healthcare, remote education, and
tourism [2], [3]. These new technologies provide users with
an immersive medium that allows them to observe and actively
engage with real or rendered content. One central application
of VR/AR is telepresence - that is, the presentation of a
digital human element. These reproductions may be lifelike
3D models or stylized digital replicas (often called “avatars” or
“Holograms,” albeit technically incorrect, given that hologra-
phy is not involved.). Having the capacity to communicate with
others in an immersive virtual environment is an appealing
technological prospect, which, if successful, will enable users
to engage in visually intimate personal connections remotely.
Immersive digital spaces where users are able to communicate
and collaborate in ways that mimic real-world interactions
while benefiting from the convenience and possibilities of the
virtual world are expected to become more available due to
significant recent improvements in deep learning and graphics
for digital human rendering.

Motivated by these developments, this work targets telep-
resence scenarios where users engage in remote visual in-
teractions within virtual, yet realistic environments. Since
human avatars are our focus, we are especially interested
in the faithful emulation of facial expressions, hand and
body movements, as their accurate reproduction is needed
to ensure realism. Early-stage attempts to create such com-
munication platforms include products like Meta’s Horizon
Meeting Rooms [4]. As these technologies mature, the pro-
gression of human avatar or “digital human” representations
toward heightened degrees of realism and immersion, has been
accompanied by notable increases in data volume. This issue
may increase due to increases in spatial and temporal display
resolution. Due to limits on available networks, computing,
and device bandwidths, volumetric and texture compression
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Fig. 1.
Database. Best viewed Zoomed.

tools are required to ensure network throughput with minimal
congestion. Compression causes distortions, however, which
can severely degrade viewers’ experiences. Other frequent
sources of visual artifacts in VR/AR arise from point-of-view-
based rendering errors and network-related latency. To avoid
these issues, predictions of perceived distortion can be used
to in development and monitoring. Consequently, the design
of perceptual VQA models for digital humans is important.
In modern streaming systems, perceptual models like SSIM
[5]1, (6], VMATF [7] guide encoder and bitrate decisions [8] to
achieve optimized visual quality at lower bitrates. These tools
help ensure that videos streamed and shared over bandwidth-
limited networks maintain the best possible perceptual quality
to support pleasurable viewer experiences. Building on these
successes in generic video, we believe that a domain-specific
perceptual VQA model for rendered digital humans could be
used similarly to optimize visual quality and enhance user
experiences in virtual telepresence scenarios under VR/AR
bandwidth constraints.  Designing VQA models and algo-
rithms for VR/AR digital human content requires addressing
a number of challenges not encountered in traditional VQA
scenarios:

« Portions of the content (e.g. faces, hands) have a high per-
ceptual weight [9], and consequently their visual quality
is especially important.

o Immersive VR/AR content typically has a significantly
larger field-of-view compared to traditional display. How-
ever, the effective resolution in pixels-per-visual-degree is
typically much lower [10]], which can cause visible loss
of quality, or increase the visibility of visual distortions
(L]

e User’s eye and head motion may interact with display
latency and persistence, causing additional artifacts.

o Use of Region-of-Interest (Rol) based encoding, where

(b) 2D Multi-View Quality Metrics

Reconstructed Textured Mesh
Frame/Video

(c) 2D Front-View Only Quality Metrics

Ilustration of popular approaches to mesh quality assessment using the asset “Frank Casual Talking” from LIVE-Meta Rendered Human Avatar

gaze location is measured (e.g., by eye tracking) or pre-
dicted (via saliency analysis) for higher quality encoding.

This work introduces Hologram Quality Assessor
(HoloQA), a full reference video quality assessment model
for rendered human avatars which uses a mixture-of-experts
approach to model low-level visual artifacts and their visual
impacts on high-level VR/AR content. HoloQA achieves
state-of-the-art quality prediction performance on the newly
introduced LIVE-Meta Rendered Human Avatar Database
[12]. We also demonstrate the competitive performance of
HoloQA on other digital human avatar databases and for
synthetically generated video quality applications like cloud
gaming.

The paper is organized as follows. Section |l reviews prior
research on objective video quality assessment algorithms.
Section reviews the LIVE-Meta Rendered Human Avatar
Database. Section introduces our proposed FR-VQA
model for avatar-centric VR/AR and explains the modules of
HoloQA in detail, while Section |V| studies the performance
against other models. Section describes the outcomes of
ablation studies on HoloQA. Section explores potential
directions for future research. The Supplementary Material
includes more detail on the LIVE-Meta Rendered Human
Avatar Database and HoloQA model. It also offers a study of
HoloQA’s performance on VQA databases relevant to VR/AR
applications.

II. RELATED WORK

We begin by reviewing perceptual objective models for
evaluating the quality of 3D meshes and established models
for assessing generic 2D image and video quality. The models
we consider can all be applied to predict the quality of digital
human avatar videos, albeit with varying degrees of success
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as this is not part of the design of most metrics. Our target ap-
plication scenarios are online VR/AR collaboration platforms,
such as Meta Horizons. These platforms generally use front-
facing cameras, and the LIVE-Meta Rendered Human Avatar
Database is designed for creating models that assess quality
primarily on the view rendered from the perspective of the
front camera.

Perceptual objective quality assessment algorithms encom-
pass two primary categories: Full Reference (FR) and No
Reference (NR) models. FR algorithms assess the quality of
distorted images, videos, or meshes by comparing them to
pristine source content. NR algorithms assess quality by mea-
suring intrinsic properties against statistical models without
needing a reference. Our focus here is on the development of
FR-VQA models for human avatar videos.

A. 2D Image and Video Quality Assessment

2D FR image and video quality prediction algorithms aim
to measure the degree of perceptual fidelity between distorted
and reference images and videos. Simple, computationally
inexpensive metrics like Peak Signal Noise Ratio (PSNR) and
Mean Square Error (MSE) have long been used to measure
image and video fidelity; however, they have been shown
to poorly align with human perceptions of visual distortion
[13]. Early works in perception-based FR-IQA include the
Structural Similarity Index (SSIM) [5]] and its many variants,
including MS-SSIM [6] and FSIM [14]. SSIM measures the
perceptual similarity between images by analyzing local lu-
minance, contrast, and structure differences. SSIM is typically
extended to video quality measurement by average pooling
SSIM scores across the frames of a quality-analyzed video.
Visual Information Fidelity (VIF) [15] is another popular
FR-IQA model that has been adapted into many FR-VQA
models. VIF deploys a perceptually relevant statistical model
of bandpass image/video coefficients to represent distortions.
FR-VQA models like ST-RRED [16], SpEED-QA [17]], and
ST-GREED [18] extend the principles introduced in VIF.
The Video Multi-Method Assessment Fusion (VMAF) model
[7], which, like SSIM, is widely used by industry, is an
ensemble model that combines four VIF features with DLM
[19], and a temporal frame difference feature. The FUNQUE
model proposed in [20], [21]] combines many perception-based
quality features in a very efficient way by sharing bandpass
decomposition to compute them. FovVideoVDP [22] incorpo-
rates display device characteristics, bandpass decomposition,
and low-level perceptual models such as contrast sensitivity
functions and masking, among others.

More FR-IQA/VQA models harness deep learning to predict
quality. LPIPS [23] is a popular image similarity metric,
often used as an FR-IQA metric, especially in super-resolution
problems. DeepVQA [24] uses a CNN-based feature extractor
to measure spatiotemporal distortions, amalgamating frame-
wise quality scores over time. C3DVQA [25] employs 3D
convolutional layers to assess potential temporal aliasing arti-
facts. Vision Transformers, known for their prowess on diverse
visual tasks, have also been utilized for VQA applications. The
model in [26] combines CNN-based feature extraction with a

Transformer-based encoder to conduct video quality predic-
tion. Self-supervised pre-trained models like CONTRIQUE-
FR [27], CONVIQT-FR [28]], and Re-IQA-FR [29] trained on
large corpora of unlabeled image and video data, demonstrate
impressive IQA/VQA capabilities and achieve state-of-the-art
performance across diverse subjective quality databases. Re-
cently, large multimodal/language models (LMM/LLMs) [30]-
[32] have been applied to image and video quality assessment
problems, achieving state-of-the-art results on generic IQA
and VQA tasks. However, while powerful models have been
developed on large generic datasets, domain-specific tasks
such as rendered avatar-quality assessment have been limited
by the availability of only small dedicated datasets, obtained
by headset-based VR/AR studies requiring carefully controlled
conditions and rigorous evaluation procedures. This limited
data, coupled with modality and display-specific artifacts (e.g.,
wide-FOV distortions), has restricted direct transfer of existing
method, thereby motivating us to explore tailored approaches,
resulting in our model called HoloQA.

B. 3D Mesh Quality Assessment

FR algorithms designed to assess the perceptual quality
of 3D meshes that are transmitted over bandwidth limited
networks, can be classified into two main categories. One
category [33[]-[35] directly processes the 3D meshes, while
another uses 2D FR-IQA/VQA models to analyze multiple
2D rendered views [36], [37] of 3D models. Fig. E] shows
visual representations of the two primary categories of FR
3D mesh quality assessment models. Fig. |1| (a) depicts direct
quality assessment of 3D meshes, whereas (b) illustrates
methods involving that render a few views, and then apply
2D-IQA/VQA methods on them.

The authors in [33] used curvature information to objec-
tively assess the quality of 3D meshes. They utilized two psy-
chological aspects of the human visual system, visual masking
and saturation effects, to quantify structural changes. The
metric in [34] relies on a local roughness measure extracted
from Gaussian curvature on the mesh. It calculates a perceptual
distance between two meshes by comparing the variance in the
normalized surface integrals of the local roughness measure.
The method in [35] uses curvature statistics for mesh quality
assessment over multiple scales similar to multi-scale SSIM
[6]. The authors of [38] propose an SSIM-like method for
comparing structural information between an original and a
distorted mesh, employing a multi-scale visual saliency map
to compute local statistics. As discussed earlier, multiple 2D
renderings can be used to simplify mesh quality prediction
using a 2D IQA/VQA framework. Methods like those in
[39], [40] predict mesh quality by employing a limited set
of rendered 2D views.

Given our primary focus on digital human avatars that are
transmitted over bandwidth limited networks, it is pertinent to
discuss prior studies on assessing the quality of digital human
meshes. The DHHQA dataset [41] introduced a large-scale
assessment database tailored for building models that evaluate
the quality of 3D scanned digital human heads (DHHs). Using
this resource, an FR mesh quality assessment model was built,
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using 2D projected views and leveraging a pre-trained Swin
Transformer [42]. While the DHHQA database contains only
3D human head models, the SJTU-H3D [43]] subjective quality
database is devoted to full-body digital humans. It comprises
40 high-quality reference digital human bodies along with
1,120 human-labeled versions of them generated by applying
seven types of distortions. Another recent resource is the
large-scale dynamic digital human quality assessment (DDH-
QA) database [44]. The dataset encompasses diverse motion
contents and diverse distortions, making possible studies of the
perceptual quality of dynamic digital human representations.
Geo-metric [45] ran a study to quantify perceived distortions
in the 3D geometry of faces, and following FaceMap [9]
quantified the saliency of regions of the face when similarly
distorted. Finally, the most recent database focused on quality
assessment of digital human avatars is the LIVE-Meta Ren-
dered Human Avatar VQA database [[12], which we use in the
development of our algorithm HoloQA design and is discussed
in Section [[II

C. Relevance and Significance of Our Work

As described in Section one way to reduce the compu-
tational complexity of the 3D mesh quality assessment tasks
is to transform them into 2D IQA/VQA problems. Similarly,
HoloQA operates only on front-rendered views to conduct
quality assessment as shown in Fig. |1| (c). Our approach is
motivated in two ways: first, the front view of a digital human
is usually the primary focus of interest, especially in our
target application of VR Live Collaboration. Second, it leads
to improved computational efficiency by reducing both the
rendering requirements and the processing load on the 3D
mesh. HoloQA is the first attempt to model the quality of
digital human avatar videos within VR viewing environments.
Our proposed method includes a number of unique elements
designed to meet the needs of VR environments while being
flexible enough for traditional 2D VQA. It operates on a wide
Field of View (FOV), accounts for the viewing conditions in an
HMD, and is sensitive to temporal distortions associated with
the natural head movements of users wearing VR headsets.
Additionally, we perform region-of-interest-specific processing
along with semantic information processing, which in our
context involves analysis of the human body and face. As
a result, HoloQA achieves significantly better performance
than existing methods in assessing the performance of digital
human rendering.

III. LIVE META RENDERED HOLOGRAM VQA DATABASE

This section presents a brief review of the recently intro-
duced LIVE-Meta Rendered Human Avatar VQA Database
[12]. This subjective video quality database targets VR Live
Collaboration applications, and contains 720 video sequences
at 1800x1920 resolution, with durations between 14-15 sec-
onds. Videos were obtained by introducing artifacts onto
36 pristine source avatar videos using 20 different distor-
tion parameter settings. The authors conducted a large-scale
subjective study, with 78 human subjects rating each video.
All videos in the study consisted of front view renders of

3D human body avatars. They were viewed by the study
participants in a VR headset (Meta Quest Pro [46]). Sample
frames from this dataset are shown in Fig. [2| The distortions
studied include latency, low frame rate, decreased texture map
resolution, and reduced depth map resolution (see Section I of
the Supplementary Material for more details). The diversity
of content and distortions in the database make it suitable
for developing quality prediction models for digital human
applications.

IV. PROPOSED ALGORITHM: HoloQA

The Mixture of Experts (MoE) concept is a popular design
principle in machine learning. It emphasizes the integration
of multiple specialized “experts” to handle complex tasks by
leveraging the combined input of multiple component models.
The NR-IQA model Re-IQA [29] successfully deployed the
concept of MoE using two separate encoders that respectively
analyze high-level image content and low-level visual distor-
tions. In a similar manner, HoloQA adopts an MoE approach
that deploys two separate modules predictive of perceptual
quality-related aspects of avatar distortion and content. Unlike
Re-IQA, which relies on an extensive dataset of unlabeled
natural scene images to pre-train a quality-aware encoder, we
created a handcrafted module for two reasons. First, there
is a lack of available 2D-rendered video frames portraying
digital human avatars, which is inadequate for pre-training
deep neural network backbones in self-supervised settings.
Second, we integrate essential feature extraction mechanisms
into the distortion-aware module in HoloQA, imbuing it with
characteristics unique to VR-related applications that con-
ventional convolutional neural networks/transformers cannot
readily capture in the absence of large amounts of data.
The content-aware module of HoloQA builds on the same
vanilla ImageNet [47] pre-trained backbone used in Re-IQA,
by further pre-training on avatar content-specific datasets, such
as human face and body image databases. A schematic of
HoloQA is shown in Fig.

A. Distortion-Aware Module

The perceptual distortion-aware module of HoloQA has
two primary components. The first is the Human Visual
System (HVS) simulator, which embodies various perceptual
processing models, including multiscale decomposition,
contrast encoding, and contrast sensitivity function (CSF). The
second component, a statistical feature extractor, processes
the outputs generated by the HVS simulator. It measures the
distortion-sensitive statistical differences between distorted
videos and their pristine reference counterparts, yielding a set
of avatar video distortion-aware features.

1) HVS Simulator: The HVS Simulator comprises four
sequential processing steps, accepting input videos and
generating activation maps fed to the statistical feature
extraction module. The sub-modules in the HVS Simulator
were inspired by models of displays and human vision
popularized in the VDP metrics [22], and suitably adapted
to our use case. Below, we reproduce and cite the source of
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(a) Amanda Seated Listening (b) Luke Seated Listening

(c) Natasha Serious Talking (d) Wendy Listening Business

Fig. 2. Sample Frames with names of video sequences from the 2D rendered videos in LIVE-Meta Rendered Human Avatar Database.
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Fig. 3. Schematic flow of the HoloQA model. Best viewed zoomed.

each component, as appropriate. Our display model targeted
the Meta Quest Pro (specifications given in Table [[). Notably,
this can be modified to accommodate other display devices
and VQA applications, as demonstrated in the Supplementary.

a. Display Model: Modeling of the display characteristics
begins with display photometry. This component is respon-
sible for converting encoded pixel values to linear physical
units (cd/m?), accounting for the display characteristics (see
Section ITA of the Supplementary material for more detail).
During the development of HoloQA, videos are stored in an

8-bit Y’Cb’Cr format, decoded with ffimpeg and converted
into floating-point representations. They are then transformed
into the R’G’B’ format (encoded sRGB). Following this, the
encoded sRGB colors are converted into relative linear units
of luminance :

(p+0.055 ) 2.4

+0.05 if p > 0.04045

otherwise

srgb2linear(p) = ;D

_b__
12.92

where p is an encoded pixel value in the R’G’B’ format in
the range [0,1]. Finally, the decoded RGB values are scaled
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Fig. 4. Block diagram of spatio-temporal decomposition used in the Distortion
Aware Module of HoloQA. Best viewed electronically, zoomed.

to obtain absolute units of light :
L= (Ypeak - Yblack) X SrngZinear(p) + Y;)lack:a (2)

where Yjcqr is the maximum luminance, and Yjacr iS the
minimum luminance of the Meta Quest Pro display (Table ).
It should be noted that Yj;4c, corresponds to the minimum
luminance of the screen only when the ambient luminance
measured on the display screen is close to zero, an assumption
valid for the VR display device we employ. This process
transforms the input visual signal into a luminance signal
for subsequent processing by the other blocks in the HVS
Simulator. The display photometry model presented here is a
simplified adaptation of the perceptual display model proposed
in [48].

After display photometry, the geometric properties of the
display are modeled, calculating the angular display resolution
as described by [22f]. In traditional VQA studies, the displays
may cover only a small field of view, and the angular resolu-
tion measured in pixels-per-visual-degree (ppd) is assumed to
be constant across the display and can be obtained using the
relation:

m

360 x tan~! (M) ’ 3

Th X dy

Nppd_center =

where d;qin 1S the width of the width of the virtual VR
display, d,, is the viewing distance in the VR environment,
and 7, is the horizontal resolution of the display device.
From Table m d, and rp, are readily available, but to compute
Nppd_center> W€ need dy;qen, Which needs to be determined
by a series of computations, as shown in Section IIB of the
Supplementary material. However, for wide FoV VR displays
like the Meta Quest Pro, the angular resolution is not constant
and increases considerably as the deviation from the central
viewing direction increases. The following relation can be used
to compute the angular resolution as a function of eccentricity
e (in degrees) :

me . 1\ _ e
tan (180 + 2~nppd_cen,ter> tan ({i5)

nppd(e) = Nppd_center X .
‘Mppd_center
4)

In Section IIC of the Supplementary material, we plot the
variation of angular resolution as a function of eccentricity.

6
TABLE I
META QUEST PRO SPECIFICATIONS

‘ Resolution ‘ FoV (° diagonal) ‘ Viewing Distance (m) ‘ Max Luminance (nits) ‘ Min Luminance (nits) ‘
| 1800x1920 | 11124 | 12 | 200 | 0.1 |

b. Spatio-Temporal Decomposition: The temporal decompo-
sition employed HoloQA follows the model of [22], which
in turn draws inspiration from prior research on retinal gan-
glion cells in the vision system [49]-[52]. Approximately
80% of these cells are Parvocellular (P-cells), while 15-20%
are Magnocellular (M-cells). M-cells demonstrate heightened
responsiveness to rapid temporal changes but exhibit less
sensitivity to spatial detail or color. Conversely, P-cells are
highly responsive to fine spatial detail and color information
but are less so to temporal stimuli. As shown in Fig. [
the spatio-temporal decomposition has dual paths, with one
pathway capturing rapid changes and the other capturing
slower ones. In [22], the time domain response of the paths
encoding slow changes is expressed as by an exponential
function of logarithmic time t:

2
Reon(t) = k1 exp((log(tﬂ; 210g(ﬁs)) ) 5)
OS
where € is a small constant that ensures the stability of
the logarithmic function near t = 0, 3, is the time lag of
the response, and oy determines the filter’s bandwidth. The
constant k; is chosen so that the filter’s response to a constant
signal remains unchanged, i.e., is level preserving. The time
domain response of the path that encodes fast changes is
obtained as the derivative of the time domain response of the
slow pathway :

d
RFast(t) = k2$RSlow(t)

k Riionw(t) (log(t + €) — log(5s)) ©)
2 o2(t + )

As in [22]], the normalization constant ko is chosen to ensure
that the contrast at the peak frequency of 5 Hz is preserved.
The peak responses of the static and transient paths are at 0
Hz and 5 Hz, respectively. The two paths are linear digital
filters applied as sliding windows on the output of the display
model. Next, similar to popular FR-IQA/VQA algorithms [5],
6], [22] that employ spatial decompositions to model the
primary visual cortex, the responses from the slow and fast
encoding paths are subjected to spatial decompositions. While
older models such as [5], [6] utilize simple spatial multi-
scaling, later models like [15[], [17]], [18] employ wavelet-
based decompositions, which have better approximation prop-
erties but higher computational complexity. As in [22]], we

. employ a decimated Laplacian pyramid-based decomposition

[53]] applied independently on the slow and fast paths. The
decimated Laplacian pyramid is computationally efficient as
compared to wavelet decompositions. Section IID of Sup-
plementary Material provides a high-level understanding of
how to construct a decimated Laplacian pyramid. The peak
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frequency in each band indexed by b is given by :

0.5 nppa forb=1
, 7
o= {02%6124 Nppa for b>1 @

where n,,q is the angular resolution given by equation
Unlike [22], which dynamically adjusts the depth of the
Laplacian pyramid based on the characteristics of the display
geometry, we limit its depth to three levels, as this was found
not to reduce the model’s performance (across multiple VQA
datasets), but significantly reduces the time complexity to
obtain distortion-aware features, an observation also verified
in [54]. Fig. shows temporal and spatial decompositions
on a video response obtained from the display model.

¢. Local Adaptation and Contrast Coding: Following the
temporal and spatial decomposition of the visual signal into
two temporal channels and three pyramid levels, we compute
the contrast at each coordinate of the pyramid coefficients. Let
Ly o(x,y) and Gy (z,y) denote the Laplacian and Gaussian
pyramid coefficients at pixel locations (x,y), where b € [1, 3]
refers to the pyramid levels and ¢ € {slow, fast} refers to
the temporal channels. Contrast (or Michelson’s contrast) C'
can be expressed as :

AL

Lmean

Lmam - Lmzn

¢= Lmam + Lmzn B
where L denotes luminance. We use the Laplacian and
Gaussian pyramid coefficients to compute local bandpass and
smoothed contrast. Since any bandpass signal can be regarded
as the difference between two low-pass (in this case, Gaussian-
smoothed) signals, the Laplacian coefficients, respectively,
can be used as smoothed proxies for AL. As observed in
[55]], the contrast thresholds are better aligned with Weber’s
Law when L_mean in equation [8| is replaced by background
luminance L,, which only depends on local neighborhoods
of luminance. We approximate luminance at each coordinate
and each pyramid level by the smoothed luminance values at
one higher level in the corresponding Gaussian pyramid of the
slow encoding pathway. Thus, contrast C}, .(z, y) is computed

as :
Lb,c(xa y)
Gb+1,Slow (.T, y)

; ®)

Cb7c(m7y) = )
d. Spatio-Temporal CSF Filtering: Each computed contrast
is normalized by converting it into multiples of the threshold
contrast. This is done by multiplying the contrast with the
sensitivity, defined as the inverse of threshold contrast. The
sensitivity is obtained from the contrast sensitivity function
(CSF). The Let 6‘1’7)C denote normalized contrast and Sy .
denote the CSF. The relation among Sy ., Cp . and C,’j,c at
(z,y) is given by :

Cllyyc(xv y) = Cb,c(xv y) : Sb,c(xv y)

We utilize the CSF model developed in [22], which incor-
porates extra-foveal correction applied to the standard spa-
tiotemporal CSF, which better matches the wide field-of-view
visualized in VR applications. It is given by :

Sb,c(xa

(10)

y) :Sezfov(pb($7y)awc;La(xay)7e(x7y>)' (11)

The extra-foveal CSF is a function of the peak spatial
frequency in each band py(x,y) at coordinates (x,y), w is
the peak temporal frequency of the slow/fast encoding path,
Lo(z,y),e(x,y) is the local luminance of adaptation and
the eccentricity at the coordinates (x,y), assuming that the
fixation point is at the center of the frame. More details about
the CSF can be found in Section IIE of the Supplementary
section.

2) Statistical Feature Extractor: Let the response of the HVS
simulator be R .)(x,y). The final step of the HVS simulator
involved normalizing the contrast using the CSF function,
Rpe)(z,y) = Cy (v, y). We then apply perceptually relevant
statistical feature extractors to convert contrast responses
into “distortion-aware” features. The responses of the HVS
simulator are transformed into distortion-aware feature
maps, which are first spatio-temporally pooled to generate
distortion-aware atomic features. These features are then used
to train a regression model to predict perceptual quality.

A variety of perceptually motivated statistical feature
extractors are available, including structural similarity [5]],
[6]], [56], entropy differencing [[16]—[18]], and contrast masking
[19], [22]. The feature extraction process for all these families
of feature extractors is relatively inexpensive as compared to
the HVS simulation pipeline. Consequently, multiple feature
extractors can be applied without significantly increasing the
overall computational complexity of the model [7], [20]. In
the following, we describe the statistical feature extraction
process used by the HoloQA model. Throughout, denote
the responses of the HVS simulator to the reference and

test videos as R(lf ¢ (@, y) and RGe) (2,y), videos respectively.

a. Structural Similarity: Inspired by the success of CW-SSIM
[56] on quantifying 1mage 91m11ar1ty, we employ a similar
model on the responses R )( y) and R{;%) (2,y) delivered
by the HVS simulator. However, while CW-SSIM computes
image similarity in the complex wavelet domain, the Laplacian
pyramid yields real-valued responses. The structural similarity
map is thus defined as,

2-Gx (R(b C)(:E Y) - szsct)(

G (R (2, 9)2 + (RIS (

y)) +e
Y))?) + €’
(12)
where €, and e, are small stabilizing constants (=~ 10~'2)
and G(.) is a 7 x 7 box filter that smooths the activations.

SS(b,c) (SL', y) =

b. Entropic Differencing: Several popular VQA models are
based on measuring entropic differences (ED) between band-
pass distorted videos and their bandpass reference counterparts
subjected to identical spatial and/or temporal decompositions
[17], [18]. We have found (as shown in Section IIG of
Supplementary Material) that the bandpass responses to the
preprocessed reference videos R )(x y) reliably obey a
zero-mean generalized gaussian dlstrlbutlon (GGD), while
the bandpass responses to the preprocessed distorted videos
ngg;) (x,y) deviate from GGD. This implies that simple
measurements that quantify those deviations from the GGD,
e.g., by entropic differencing, can be used to generate highly
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predictive distortion-aware features. The univariate probability
density function (PDF) of a zero mean GGD variate is given

by:

where I'(+) is the Gamma function,

I‘(a):/ % e " d.
0

The shape parameter S controls the shape of the distribution
(tail weight and peakiness) while « scales the variance. The
closed-form expression for the entropy of a zero mean GGD

is: h(X) = 5~ log (mr(’i/ﬂ)> |

The derivation of the closed-form expression for entropy for
a zero-mean GGD can be found in Section IIF of the Supple-
mentary material. To compute these quantities, the responses
RS o (@) and R{=(x,y) are divided into 5 x 5 spatial

(b,
blocks indexed as RT;J; o(@,y) and R’E;Slf o(@,y) where p
€ [0, P — 1]. On each of the local spatial blocks, compute

two terms, local variance aQ(RTSJ;/ ct)e *") and the local entropy,

h(RTef/tESt). Similar to [[16], [[18], we also scale the entropy

(14)

5)

(p:b,0)
using the scaling parameter v(Rz;fl)/ ;&)e *"). The parameter is
defined as:
WG ") =leg( o RELE™). (9

Scaling by the variances imparts greater weight to the entropic
differences in spatial/temporal regions of high activity, which
tend to be more salient, while providing numerical stability in
regions having little activity. Finally, the entropic differences
after scaling are obtained as:

ED(p,b,c)(xvy) | (RTEf

e HRGE 5) =

el )= ARG (R -

a7
The scaled entropies across all patches are mapped back
to their original spatial locations, yielding a final entropic
differencing map FE, ) (z,y’), where 2/ = HJ, and

y = [L]. i

c. Contrast Masking: a phenomenon in visual perception where
the visibility of an image feature is reduced due to the presence
of another feature, usually having similar spatial frequencies
and/or orientations. Masking effects play a crucial role in
video processing applications, including video compression
and quality assessment, since successful masking models can
be used to predict how humans perceive distortions in complex
scenes. In VQA algorithms, the reference video usually serves
as the masking signal to adjust distortions, as distortions are
commonly less visible on textured areas than on smoother
ones. However, some artifacts render a video more textured
or locally active than the original, making it problematic
to use the original video as the masker; a good example
is the introduction of the false contours or “banding” of
smooth areas, often from compression quantization. One way

of handling this is via mutual masking, first introduced in
MOVIE [57]], which can be modeled as :

MMy o(z,y) = min {|Ry% (z, )|, | RS (2, )| } -

(18)

Then, the output map of the contrast masking operator be-
comes :

p
R e.0) R ,0)
L+ (k x MMy (2,y))%

CMy.(z,y) = (19)
where k, p and g., ¢ € {slow, fast} are free parameters of
the model. We adopted the parameter settings from [22] to
avoid additional tuning.

d. Atomic Feature Generation: Next, we outline the steps
to develop atomic features from the three statistical space-
time feature maps SSw o) (7,y,t), EDgyo)(z,y,t), and
CM,)(x,y,t), where we have now added the frame in-
dex t. In the following, we describe the process of pooling
the statistical feature maps along their spatial dimensions to
derive atomic features. We will explain the process using
SSb,c)(w,y), but the process is same of the other maps
EDg o) (2,y), CMp,)(x,y). At each time frame instant ¢,
compute the Coefficient of Variation (CoV) pooling :

Std(ss(b,c) (l‘, Y, t))

SScov (t) = mean(SS([Lc) (1'7 Y, t))

; (20)

where mean and std are the average and standard deviation
calculated over x,y. Executing the identical process
on the other maps yeilds ED¢,v (t) and CM coy (t). Next,
mean and standard deviation pooling of SScov, EDcov,
and CM ¢,y across the time dimension yeilds distortion-
aware atomic features of the form mean(SScov (t)) and
std(SScov (t)), and similar for ED ¢y, and CM ¢,y (hence,
six in total). Mean and standard deviation pooling capture
average and average deviations of the distortion-aware maps.
Large values of the latter are expressive of large quality
variation, which leads to worse impressions of overall quality.
This is effectively captured by CoV, as explained in [57].
Two atomic features are computed at each level/band of
the distortion-aware feature maps. Since we use 2 temporal
channels x 3 spatial decomposition levels, a total of 12 atomic
features are generated on each three classes of distortion-aware
feature map, hence 36 atomic features are regressed on when
learning the Distortion-Aware module of HoloQA.

B. Content-Aware Module

Contemporary VQA algorithms [29], [58]], [59] commonly
use pre-trained neural networks to model those aspects of
content on quality prediction tasks. In a generic VQA scenario,
where videos typically feature diverse content, ImageNet
pre-trained models have been shown to improve quality
prediction when combined with distortion-aware features
[29], [58]. The more sophisticated Distortion-Aware Module
in HoloQA delivers superior or comparable performance to
other state-of-the-art VQA algorithms, as evidenced by the
results in Tables and without relying on content-
specific features or pre-training on other unlabeled image or
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video databases. The content-aware module further enhances
quality prediction performance by learning quality-relevant
aspects of identifiable content, such as faces, human bodies,
or parts of bodies. A content-aware module can thus strongly
contribute to more accurate overall video quality evaluations.

1) Content Specific Self-Supervised Fine-Tuning: We used the
ResNet-50 based MoCo-v3 [60] model, pre-trained on the
ImageNet database, as the backbone of the content-aware
module. For our use case of quality assessment of digital
human avatars, we created two content-specific models-one
for the human body and one for the human face-by fine-
tuning the pre-trained MoCo-v3 model in a self-supervised
setting. As explained below, we fine-tuned models on both
synthetic human faces and on full-length human bodies,
presupposing these to be the most visually salient regions of
live collaboration scenarios. Sections and provide
details on the Rol processing.

a) Fine-Tuning Databases: We used two databases of
synthetically generated images to fine-tune the ImageNet-pre-
trained MoCo-v3 model. Human body images were sourced
from the SHHQ database [61]], while human face images were
obtained from the VGGFace2-HQ database [62]. Additional
information about these datasets can be found in Section IITA
of the Supplementary material.

Gradient Update
¥ a—
Query Encoder ()
——> (ResNet-50 + Projector
MLP + Predictor MLP)

Negative Queries
Key Encoder (f) from same batch

~—> (ResNet-50 + Projector
)

LML= P Loy
No Gradient Flow, |- -
Momentum Update

Fig. 5. Block diagram of MoCo-v3 based content aware finetuning workflow.
This example shows the processing of face images; the workflow remains same
when fine-tuning on human body images. Best viewed zoomed.

b) Fine-Tuning Algorithm: We fine-tuned the ImageNet pre-
trained MoCo-v3 models on the two above-mentioned content-
specific databases. The setup, as shown in Fig. [5] consists of
two encoders, f, and fj;,. The encoder f, comprises a ResNet-
50 backbone, a projection head, and an additional prediction
head as in [63]. The projection and prediction heads are
feed-forward multi-layer perceptrons. By contrast, the encoder
fr includes the backbone and projection head but lacks the
prediction head. The f; encoder is updated by taking the
moving average of f, [64], without the prediction head.
During fine-tuning, we generate two augmented crops of
every face (or body) image, reusing the default data augmen-
tation techniques used in MoCo-v3: random resized cropping,
horizontal flipping, color jittering, grayscale conversion, blur-
ring, and solarization. The two face (or body) image crops
are processed by two separate encoders, f, and fj, resulting
in output vectors ¢ and k. From, Fig. 5] ¢ acts as a query
to retrieve its corresponding key k. This is accomplished by

minimizing the contrastive loss, InfoNCE [65]], ensuring that
the query and key vectors are optimally aligned. The loss for
query q can be expressed as :

exp (q-k*/7)
exp (g - k*/7) + X, exp (g k= /7)

where kT is the output of f;, for the crop obtained from the
same image as g, which is referred to a positive sample. The
set {k~} includes the outputs of f; from different images,
referred to as negative samples with respect to ¢. 7 is a
temperature hyper-parameter used for /5 normalization of ¢
and k. Further details on the fine-tuning process can be found
in Section IIIB of the Supplementary material.

—log

L, = 1)

2) Atomic Feature Generation The atomic feature generation
process in the Content-Aware Module is similar to that of
the Distortion-Aware module. Unlike the majority of popular
IQA/VQA methods [27], [29], [58]], [59], that extract features
from the final layers of a pre-trained deep neural networks, we
draw inspiration from prior studies that exploit intermediate-
layer activations (e.g., [23], [66]]) and extract features from
intermediate layers. Details on selecting these layers can be
found in Section IIIB of the Supplementary Material. For
each selected intermediate layer, we obtain a feature map
FMq,(z,y,t), where [ and ¢ denote the layer index and
channel index, respectively, (x,y) are spatial indices, and 7 is
a frame index. We then apply average and standard deviation
pooling across the spatial dimensions to obtain frame-level
features, f(;c)(t) and g( ) (t) given by,

fi,e)(t) = meang , (F'M ) (7, y,t))
9(l,c) (t) = Stdx,y(FM(l,c) (.’E, yat))

Before applying temporal pooling, we compare the ref-
erence and test sequences in feature space. At each layer
{ and channel ¢, first obtain frame-level features on the
reference f7<(t), gif(t) and the test f%(t), gi%*(¢) videos
as in equation [22] We then compute absolute differences as

Afie(t) =[£I (8) = £ )],

(22)

(23)
Then, to obtain video-level features, we perform mean
and standard deviation pooling across the temporal dimension
using A f(;,¢)(t) and Ag( ) (t), resulting in four final features
at each layer. Extracting features from four intermediate layers
yields 4 x 4 = 16 features. To reduce the computational com-
plexity, the feature extraction is performed at one frame/sec.
We conducted experiments comparing feature extraction using
all frames against subsampling feature extraction over discrete
time steps (e.g., 1 frame per second, see Section V of the
Supplementary material.) and observed negligible differences
in performance.

C. Region of Interest-based Processing

The video frames in the LIVE-Meta Rendered Human
Avatar VQA database consist of constant, static backgrounds
with the digital human avatars overlaid. In this database,
the applied distortions only affect the human avatars while
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preserving the background regions. To ensure quality
prediction focused on the rendered avatars while mitigating
interference from the background, we define Rol bounding
boxes, similar to models like .

Here, we focus on quality assessment, focusing on the
full bodies and on the faces of the digital human avatars
by computing bounding boxes on these regions. To obtain
bounding boxes of body regions, we processed each frame
from every reference video in the database, utilizing YOLO-
v7 [68]. To compute the bounding boxes of faces, we
used the YOLO-v8 face model [69]. By using these high-
performance detectors, HoloQA 1is able to accurately identify
the body and facial regions within every video frame of the
LIVE-Meta Rendered Human Avatar VQA database. Fig. [6]
shows examples of body and face bounding box detection.
Additionally, we provide additional robustness analysis of
these detectors in Section VII of the Supplementary Material.

D. Model Versions

We developed four versions of HoloQA by varying on the
way bounding box detection of human bodies and faces is
processed, by introducing frame tracking and the backbone
used in the content-aware module.

a. HoloQA: In the simplest version of the model, the
human body and face bounding boxes are computed on all
frames of each analyzed video. Among these, the largest
bounding box across all frames is found, whether human
body or face. Assuming the video frames have spatial indices
increasing from the left to right and from top to bottom, let
the bounding coordinate of the face or body bounding box in
the i-th frame be denoted as:

leftiv

Then, across all frames ¢, the largest bounding box is defined
by the bounding coordinates:

(top, bottom;, right;) .

(mjnlefti, mintop;, maxbottom;, max Tighti) .
1 ] 7 3

This ensures that the final region of interest over which
avatar video quality is predicted (whether of the body or
the face) is consistently contained within a global cropped
window. We use this admittedly simple version of HoloQA
to facilitate comparisons against other FR-VQA algorithms.
This is important since nearly all widely used FR-VQA
algorithms predict quality over fixed rectangular frames. The
backbone used in the content-aware module in this version is
the MoCo-v3 model pre-trained on the ImageNet database,
enabling its use on non-avatar related VQA applications.

b. HoloQA+: This version aims to improve the performance
of the Content-Aware Module by fine-tuning the ImageNet
pre-trained backbone in a self-supervised setting using
unlabelled human face and body images. As discussed above,
while the simplicity of the HoloQA design yields a generic
algorithm usable for any VQA task, HoloQA+ is enhanced
for predicting the quality of 2D-rendered avatar videos in VR

presentations involving human interactions.

c/d. HoloQA/HoloQA+ with Frame Tracking: To further
enhance the performance of HoloQA/HoloQA+, we deployed
a bounding box tracking mechanism to better localize the
body and face regions, rather than just using a single,
global maximum bounding box. The tracking is achieved
by acquiring the bounding boxes and directly utilizing their
coordinates in the HoloQA processing pipeline, instead of
obtaining the maximal global bounding box as in the previous
model versions. This approach improved the algorithm
performance of HoloQA/HoloQA+, as shown in Section [V]

Fig. 6. Sample frames from the sequences “Amanda Seated Listening Party”
and “Doctor Luke Seating Listening” showing the overlaid body bounding
box (in green) and face bounding box (in blue). Best viewed zoomed.

E. Full Reference VQA Regression

The final predictions produced by (all versions of) HoloQA
are obtained by concatenating the feature representations pro-
duced by the Distortion-Aware and Content-Aware Modules
into a single vector. This feature vector is used to train a
Support Vector Regressor (SVR) with the radial basis function
kernel, to map the features to the subjective video in the LIVE-
Meta Rendered Human Avatar database.

V. ALGORITHM COMPARISONS
A. Evaluation Protocol

We assessed the effectiveness of all four versions of HoloQA
against other widely-used FR VQA algorithms using stan-
dard performance criteria: Spearman’s Rank Order Correlation
Coefficient (SROCC), Kendall Rank Correlation Coefficient
(KRCC), Pearson’s Linear Correlation Coefficient (PLCC),
and Root Mean Square Error (RMSE). SROCC and KRCC as-
sess the monotonic relationship between the objective model’s
predictions and human scores, while PLCC and RMSE gauge
prediction accuracy. Before calculating the PLCC and RMSE
outcomes, the predicted quality scores of each model under-
went a logistic non-linearity transformation to enhance
linearity in the objective predictions and align them with the
Difference Mean Opinion Score (DMOS) scale. More details
on these four performance criteria can be found in Section IV
of the Supplementary material.

Each algorithm underwent testing on 1000 random train-
test splits of the LIVE-Meta Rendered Human Avatar database
using the four performance metrics. In each split, videos
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TABLE II
MEDIAN SRCC, KRCC, PLCC, AND RMSE OF FULL-REFERENCE QUALITY ALGORITHMS AGAINST HUMAN JUDGMENTS ON THE LIVE-META
RENDERED HUMAN AVATAR VQA DATABASE (1000 TRAIN/TEST SPLITS). ALL ALGORITHMS USE STANDARD GLOBAL BOUNDING BOXES ACROSS TIME
STEPS. TOP-3 ALGORITHMS IN EACH BOUNDING BOX CATEGORY ARE BOLDFACED. ENHANCED VERSIONS OF HoloQA ARE MARKED WITH Q.

Full Reference Algorithm Regressor Bounding Box: Body Bounding Box: Face
SRCC (1) | KRCC (1) | PLCC (1) | RMSE (J) | SRCC (1) | KRCC (1) | PLCC (1) | RMSE ({)
PSNR-RGB N/A 0.7219 0.5223 0.7562 0.5750 0.7129 0.5111 0.7405 0.5924
1QA methods using PSNR-Y N/A 0.7167 0.5192 0.7505 0.5798 0.6983 0.4987 0.7285 0.6026
handerafied features SSIM |5 N/A 0.7694 0.5618 0.7755 0.5537 0.8001 0.5929 0.8264 0.4917
DLM |19] N/A 0.8599 0.6601 0.8919 0.3995 0.8716 0.6762 0.9106 0.3624
VIF [15] N/A 0.7184 0.5200 0.7499 0.5819 0.8154 0.6085 0.8513 0.4621
IQA methods using ];]/)\Il]:fl\i; SVR 0.8616 0.6573 0.8815 0.4131 0.8790 0.6835 0.9069 0.3703
supervised pre-trained LPIPS
deep features (VGG) SVR 0.8441 0.6356 0.8535 0.4558 0.8764 0.6803 0.9047 0.3734
IQA methods using CONTRIQUE [27 SVR 0.9024 0.7205 0.9470 0.2816 0.8991 0.7138 0.9403 0.2976
. . (Full Reference)
self-supervised pre-trained Re1QA [29
deep features 1 SVR 0.9068 0.7298 0.9401 0.2919 0.8988 0.7154 0.9308 0.3218
(Full Reference)
VMAEF [7] (v0.6.1) SVR 0.8179 0.6085 0.8367 0.4789 0.8695 0.6716 0.8949 0.3905
VMAF (Retrained) SVR 0.8432 0.6418 0.8732 0.4398 0.8914 0.7022 0.9055 0.3674
FovVideoVDP v1.2 [22] N/A 0.7763 0.5750 0.8103 0.5168 0.8810 0.6888 09155 0.3527
VQA methods using ST-GREED 18] SVR 0.8543 0.6619 0.8800 0.4162 0.8946 0.7154 0.9148 0.3552
handcrafted features SpEED-QA (17 N/A 0.7415 0.5363 0.7772 0.5493 0.8781 0.6853 0.9103 0.3636
FUNQUE |20 SVR 0.8655 0.6684 0.9049 0.3740 0.8980 0.7140 0.9404 0.2982
Y-FUNQUE+ [21] SVR 0.8663 0.6641 0.8914 0.3971 0.8956 0.7120 0.9355 0.3094
3C-FUNQUE+ [21] SVR 0.8599 0.6547 0.8832 0.4104 0.8981 0.7129 0.9357 0.3101
VQA methods using self- CONVIQT 28] SVR 0.9065 0.7289 0.9526 0.2673 0.8834 0.6903 09273 0.3283
supervised pre-trained deep features (Full Reference)
Handcrafted distortion aware + self- HoloQA SVR 0.9144 0.7443 0.9489 0.2671 0.9201 0.7506 0.9523 0.2650
supervised pre-trained content features HoloQA+ & SVR 0.9165 0.7507 0.9514 0.2598 0.9254 0.7641 0.9583 0.2457

were randomly chosen from 80% of the content to form the
training and validation sets, with the remaining 20% forming
the test set. We also maintained content separation between
the training and validation sets to prevent biases arising from
content learning.

B. Objective Performance Comparisons of HoloQA FR-VQA
Models

We benchmarked 15 widely-used 2D FR IQA/VQA al-
gorithms and our proposed HoloQA models on the LIVE-
Meta Rendered Human Avatar VQA database. The spec-
trum of compared algorithms extends from traditional FR-
IQA/VQA models including PSNR (both RGB & Y channel
versions), SSIM, DLM, VIF, VMAF (original and retrained
versions), ST-GREED, SpEED-QA, ForVideoVDP, FUNQUE
(and its enhanced versions), to more approaches using deep
learning including LPIPS (AlexNet and VGG backbones),
CONTRIQUE-FR, Re-IQA-FR, and CONVIQT-FR.

The algorithms PSNR, SSIM, DLM, VIF, and SpEED-QA
operate without training and were thus directly applied to the
1000 test splits. For frame-based (FR-IQA) algorithms like
PSNR, SSIM, DLM, VIF, CONTRIQUE-FR, Re-IQA-FR, and
LPIPS, features or predicted scores were gathered on a per-
frame basis, then averaged to yield video-level features or
scores. To accomplish unbiased benchmarking, features from
all algorithms necessitating training were gathered and mapped
to the DMOS over 1000 training splits employing a Support
Vector Regressor (SVR). The trained SVR model was then
used to evaluate each algorithm’s performance on the 1000
test splits.

The results in Table [l summarize the objective performance
of the FR IQA/VQA models on the LIVE-Meta Rendered

Human Avatar database using body and face bounding boxes
following evaluation strategy in [12]]. We also evaluate HoloQA
on full frames without computing bounding boxes; these
results can be found in Section VA of the Supplementary ma-
terial. Classic FR IQA frame-based models like PSNR, SSIM,
DLM, and VIF yielded moderately inferior performance,
while traditional FR VQA models like VMAF, ST-GREED,
SpEED-QA, and FUNQUE obtained improvements over the
frame-based FR IQA models, highlighting the importance
of perceptual temporal modeling. The FovVideoVDP model
with default calibration performed poorly on the LIVE-Meta
Rendered Human Avatar dataset but showed improvement with
retraining, as discussed later, in Section [VIB. We present
results for both the original and retrained versions of VMAF,
observing a slight enhancement with retraining. FUNQUE and
its refined variants, initially designed to enhance the time
complexity of VMAF, exhibit anticipated slight performance
improvements over VMAF. However, the upgraded versions
of FUNQUE, namely Y-FUNQUE+ and 3C-FUNQUE+ [21]]
yielded similar performance as the original model on the
LIVE-Meta Rendered Human Avatar dataset. This can be
attributed to the features used in models targeting scaling
and compression distortions, which differ from many of the
distortions arising in our case. For the family of models
using entropy-based statistics, SpPEED-QA yielded sub-optimal
performance, likely since it is non-trainable. ST-GREED
which uses powerful temporal model of distortion percep-
tion, performed quite well. The frame-based learning methods
LPIPS, CONTRIQUE-FR, and RelQA-FR yielded superior
performance, sometimes surpassing the performance of the
FR-VQA models, even without the advantage of temporal
processing. CONVIQT-FR obtains strong but slightly lower
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TABLE III
EFFECT OF ADDING DENSE FRAME TRACKING ON THE MEDIAN PERFORMANCE OF HOLOQA VARIANTS ON THE LIVE-META RENDERED HUMAN
AVATAR VQA DATABASE (1000 TRAIN/TEST SPLITS). ENHANCED VERSIONS OF HoloQA ARE INDICATED WITH . BEST-PERFORMING CONFIGURATION
IS BOLDFACED.

. . Body Bounding Box Face Bounding Box
Full Reference Algorithm Regressor
SRCC (1) | KRCC (1) | PLCC (1) | RMSE (1) | SRCC (1) | KRCC (1) | PLCC (1) | RMSE (})
o i HoloQA SVR 0.9144 0.7443 0.9489 0.2671 0.9201 0.7506 0.9523 0.2650
Handcrafted distortion-aware features HoloQA with

+ self-supervised pre-trained Frame Tracking & SVR 0.9163 0.7497 0.9531 0.2573 0.9291 0.7709 0.9593 0.2497

deep content features HoloQA+ O SVR 0.9165 0.7507 09514 0.2598 0.9254 0.7641 0.9583 0.2457
HoloQA+ with SVR 0.9201 0.7517 0.9556 02512 09350 0.7783 0.9618 0.2432

Frame Tracking Y
performance than CONTRIQUE. Finally, HoloQA/HoloQA+ TABLE IV

demonstrates superior performance compared to all other mod-
els by leveraging both distortion and content-aware modeling
for overall video quality prediction. The effect incorporating
dense frame-tracking incorporated in HoloQA/HoloQA+ vari-
ants are provided in Table [IT} The benefits of using frame-
wise human body/face tracking and human body/face-specific
content-aware fine-tuning are evident from the variants of
HoloQA annotated with O in Tables We provide further
insights into the contributions of the different components of
HoloQA in Section

VI. ABLATION STUDY

A. Effects of Bounding Boxes <& Frame Tracking on
Distortion-Aware Module

We investigated the effects of frame tracking and bounding
box type on the HoloQA by testing various combinations:
frame tracking on/off and face versus body bounding boxes.
The results in Table[[V]|show that the configuration using dense
frame tracking delivered the best performance when either face
or body bounding boxes were used.

B. Effects of Distortion Aware Feature Components

Next, we studied the impacts of the three categories of
distortion-aware features employed in the Distortion Aware
module of HoloQA. We evaluate them individually, in pairs,
and all three feature sets together using the best-performing
configuration found in Section Table [V] summarizes
the results. An interesting phenomenon emerges: although
the performance of the entropy differencing feature map is
poor on its own, it noticeably enhances performance when
combined with one or both of the other distortion-aware
features. Furthermore, we conducted two-sample one-sided
t-tests using the 1000 SROCC and PLCC values from the
configuration using all three categories of features and com-
paring them with the other configurations in Table The
results show that the differences were statistically significant,
demonstrating that combining all three features improves the
model’s performance with statistical significance. It is also
worth noting that, employing only the contrast masking (CM)
features with a trained regressor on the LIVE-Meta Rendered
Human dataset may be regarded as a simplified proxy to
optimize the pooling and normalization processes in the model
[22] to obtain dataset-specific fine-tuning. As expected, this
adaptation yields improved performance as compared to the

EFFECTS OF BOUNDING BOXES AND FRAME TRACKING ON THE
DISTORTION-AWARE MODULE OF HOLOQA. MEDIAN SRCC/PLCC
OVER 1000 TRAIN/TEST SPLITS. BEST PER BOUNDING BOX IN BOLD.

Bounding Box Frame Tracking: On | Frame Tracking: Off
SRCC PLCC SRCC PLCC
Body 0.9113 0.9473 0.9079 0.9428
Face 0.9253 0.9587 0.9188 0.9518

original calibrated [22] model across a larger collection of
datasets. In Section VB of the Supplementary Material, we
also discuss the performance of each distortion-aware feature
combination across distortions.

C. Effects of Bounding Box and Frame Tracking on Content-
Aware Module of Holo-QA

Similar to Section [VI-A] where we conducted an ablation
study on the design parameters of the Distortion Aware module
of HoloQA, we also performed an ablation study on the
factors affecting the Content-Aware Module. Specifically, we
investigate the effects of enabling or disabling frame tracking,
the impact of the bounding boxes, and whether the self-
supervised pretrained model is trained on the generic Ima-
geNet dataset or fine-tuned on a content-specific dataset of
human bodies or faces. The results in Table indicate that
the configuration utilizing dense frame tracking and models
fine-tuned on content-specific datasets performed the best for
both face and body bounding boxes.

D. Distortion Aware v/s Content Aware

In this section, we analyze the performance of the
Hologram-Distortion aware and Content Aware Modules of
HoloQA individually and in combination. We employed dense
frame tracking for the body and face bounding boxes. The re-
sults in Table demonstrate the performance improvements
achieved through the Mixture-of-Experts approach, which
leverages distortion-aware and content-aware features together.

VII. CONCLUSION & FUTURE WORK

This paper introduces HoloQA, a Full Reference Video
Quality Assessment model that leverages insights from recent
developments in visual neuroscience, information theory, and
self-supervised deep learning. It is able to accurately predict
the perceptual quality of rendered digital human avatar videos
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TABLE V

DISTORTION-AWARE MODULE COMPONENTS OF HOLOQA. MEDIAN
SRCC/PLCC OVER 1000 TRAIN/TEST SPLITS. BEST PERFORMANCE IS

BOLDFACED.

TABLE VII

ABLATION ON DISTORTION-AWARE AND CONTENT-AWARE MODULES OF
HoLOQA. MEDIAN SRCC/PLCC OVER 1000 TRAIN/TEST SPLITS. BEST
PERFORMANCE PER COLUMN IS BOLDFACED. RESULTS ARE WITH FRAME

TRACKING ENABLED.

Feature Set Bounding Box: Body | Bounding Box: Face
SRCC PLCC SRCC PLCC Feature Set Bounding Box: Body | Bounding Box: Face
Structural Similarity (SS) | 09017 | 00436 | 09121 | 0.9482 oA DS Ao g‘;ﬁg ggfg S‘;ZCSE :)’I%CSS
- " - istorti W . . A .
Entropic Differencing (ED) | 0.6145 0.6560 0.6988 07582 HoloQA (Content Aware Only>), 0.8963 | 09350 | 0.8799 | 0.9053
Contrast Masking (CM) | 0.8512 0.8716 0.9072 0.9467 HoloQA+ (Content Aware Only) 09039 | 09427 | 0.8896 | 09107
SS + ED 0.9052 0.9465 0.9219 0.9485 HoloQA (Content + Distortion Aware) | 0.9163 0.9531 0.9291 0.9593
SS + CM 0.9089 0.9458 09151 0.9522 HoloQA+ (Content + Distortion Aware) | 0.9201 0.9556 0.9350 0.9618
ED + CM 0.9020 0.9321 0.9170 0.9501

SS + ED + CM 0.9113 0.9473 0.9253 0.9587

[10] M. Ashraf, A. Chapiro, and R. K. Mantiuk, “Resolution limit of the eye:

TABLE VI how many pixels can we see?” 2024.

EFFECTS OF BOUNDING BOX AND FRAME TRACKING ON THE [11] A. Saha, S. K. Pentapati, Z. Shang, R. Pahwa, B. Chen, H. E. Gedik,
CONTENT-AWARE MODULE OF HOLOQA. MEDIAN SRCC/PLCC OVER S. Mishra, and A. C. Bovik, “Perceptual Video Quality Assessment:
1000 TRAIN/TEST SPLITS. BEST PERFORMANCES FOR EACH BOUNDING The Journey Continues!” Frontiers in Signal Processing, vol. 3,

BOX ARE BOLDFACED. 2023. [Online]. Available: https://www.frontiersin.org/articles/10.3389/
frsip.2023.1193523
Configuration Frame Tracking: On | Frame Tracking: Off [12] Y.-C. Chen, A. Saha, A. Chapiro, C. Héne, J.-C. Bazin, B. Qiu,
SRCC PLCC SRCC PLCC S. Zanetti, I. Katsavounidis, and A. C. Bovik, “Subjective and objective
HoloQA—-Content Aware: Body | 0.8963 0.9350 0.8850 09177 quality assessment of rendered human avatar videos in virtual reality,”
HoloQA+ Content Aware: Body | 0.9039 0.9427 0.8932 0.9280 IEEE Transactions on Image Processing, vol. 33, p. 5740-5754, 2024.
HoloQA—Content Aware: Face | 0.8799 0.9053 0.8530 0.8760 [Online]. Available: http://dx.doi.org/10.1109/tip.2024.3468881
HoloQA+—Content Aware: Face | 0.8896 0.9107 0.8594 0.8835 [13] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it? a
new look at signal fidelity measures,” IEEE Signal Processing Magazine,
vol. 26, no. 1, pp. 98-117, 2009.
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